RESUMO
A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.
Assuntos
Doenças dos Peixes , Linguados , Genoma Viral , Papillomaviridae , Infecções por Parvoviridae , Parvovirus , Filogenia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , China , Linguados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Parvovirus/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Hibridização in Situ FluorescenteRESUMO
Optical feedback interferometry (OFI) exhibits good potential in laboratory and engineering applications as an interferometric measurement technology with unique structure. One challenge of this technology is that the OFI signals may be feeble, and the OFI fringe visibility is low when the optical feedback strength is weak. It has been demonstrated that the OFI fringe amplitude can be enhanced by introducing an extra-feedback into an OFI system. At the same time, it has been confirmed that the position of the extra-feedback target must be strictly controlled as it will directly affect the fringe amplitude. However, the details of how the extra-feedback positions affect the OFI fringe amplitude, and its underpinning mechanism still needs to be unveiled. In this paper, we aim to theoretically investigate the influence of the extra-feedback target position on the OFI fringe amplitude and explore the underpinning mechanism. Firstly, a simplified analytical model for characterizing a dual-channel optical feedback interferometry (DOFI) system in steady state was derived from the Lang-Kobayashi equations. A method of solving the analytical model was developed to further explore the nature of a DOFI system. On top of that, the influence of the extra-feedback target position on the OFI fringe amplitude and its underpinning mechanism was explored, based on which the criteria for how to achieve large fringe amplitudes were summarized. The obtained results provide helpful guidance in constructing a DOFI system with enhanced fringe visibility, and further promote the practical applications of OFI technology.
RESUMO
A novel method for the generation of an optical frequency comb (OFC) is presented. The proposed approach uses a laser diode with optical feedback and operating at a specific nonlinear dynamic state named periodic window. In this case, the laser spectrum exhibits a feature with a series of discrete, equally spaced frequency components, and the repetition rate can be flexibly adjusted by varying the system parameters (e.g., external cavity length), which can provide many potential applications. As an application example, a dual-OFC system for distance measurement is presented. The results demonstrate the system's ability to achieve target distance detection, underscoring its potential for real-world applications in this field.
RESUMO
Undamped relaxation oscillation (RO) in a laser self-mixing interferometry (SMI) system may occur in some common application conditions, which may impact the stable operation of the system and degrade its sensing performance. In this work, we proposed to suppress the undamped RO by controlling the system operation parameters in a laser SMI sensing system. By numerically solving the famous Lang Kobayashi equations, the stability of a laser SMI system in a 3-parameter space of external cavity length, injection current and optical feedback factor were investigated. Based on the stability analyses, we determined the system operation conditions required for suppressing the undamped RO and derived an analytical expression for describing the relationship between the operation parameters. An experimental SMI system based on a laser diode (Sanyo, DL4140-001s) was implemented and verified the suppressing method. The experimental results showed that the SMI system in a moderate feedback regime can operate in steady state without undamped RO by setting proper operation parameters. This work provides useful guidance to design a stable SMI sensing system for practical applications.
RESUMO
In this study, a novel distance sensing method is presented by using a semiconductor laser (SL) with optical feedback (OF) and operating the SL at a switching status happened between two nonlinear dynamic states (stable state and period-one state). In this case, without the need for any electronic or optical modulation devices, the laser intensity can be modulated in a square wave form due to the switching via utilizing the inherent SL dynamics. The periodicity in the switching enables us to develop a new approach for long-distance sensing compared to other SL with OF-based distance measurement systems and lift the relevant restrictions that existed in the systems. Moreover, the impact of system controllable parameters on the duty cycle of the square wave signals generated was investigated on how to maintain the proposed system robustly operating at the switching status. Both simulation and experiment verified the proposed sensing approach.
RESUMO
Semiconductor lasers (SLs) show relaxation oscillation (RO) due to the cavity damping rate being higher than the carrier damping rate. The presence of RO in SLs contributes to abundant complex dynamics when the laser is perturbed by external optical feedback (EOF). In this work, the influence of feedback optical phase on the relaxation oscillation frequency (ROF) in an SL is investigated both theoretically and experimentally. By numerically solving the well-known Lang Kobayashi equations, the relationship between the ROF and feedback optical phase was obtained, which shows ROF is in a sinusoidal manner with respect to the feedback optical phase under weak feedback strength. A simplified mathematic expression for ROF was derived to describe such a sinusoidal relationship. Potential sensing applications can be developed based on the relationship. As an example, a new method of measuring linewidth enhancement factor of an SL was presented. Finally, an experimental setup was built and experiments were carried out to verify the relationship and the measurement method for linewidth enhancement factor.
RESUMO
A novel Dual-frequency Doppler LiDAR (DFDL) is presented where the dual-frequency light source is generated by using external optical feedback (EOF) effect in a laser diode (LD). By operating a LD at period-one (P1) state and choosing suitable LD related parameters, a dual-frequency light source can be achieved. Such a dual-frequency source has advantages of the minimum part-count scheme, low cost in implementation, and ease in optical alignment. Theory and system design are presented for the proposed DFDL for velocity measurement with high measurement resolution. The proposed design has a potential contribution to the Light Detection And Ranging (LiDAR) in practical engineering applications.
RESUMO
Hybrid massive MIMO structures with lower hardware complexity and power consumption have been considered as potential candidates for millimeter wave (mmWave) communications. Channel covariance information can be used for designing transmitter precoders, receiver combiners, channel estimators, etc. However, hybrid structures allow only a lower-dimensional signal to be observed, which adds difficulties for channel covariance matrix estimation. In this paper, we formulate the channel covariance estimation as a structured low-rank matrix sensing problem via Kronecker product expansion and use a low-complexity algorithm to solve this problem. Numerical results with uniform linear arrays (ULA) and uniform squared planar arrays (USPA) are provided to demonstrate the effectiveness of our proposed method.
RESUMO
An optical feedback laser diode (OFLD) operating in period-one oscillation (POO) with a moving external target is investigated by exploring its potential sensing capability. First, the modeling of an OFLD-POO sensing system is presented. An analytical expression is derived for OFLD-POO sensing signal, from which a new displacement measurement method is developed. The proposed sensing model is verified by the well-known Lang-Kobayashi equations used to describe the dynamic behavior of a laser with optical feedback. Then, an experimental OFLD-POO system is built in order to demonstrate an application example for displacement sensing. The measurement results show that the OFLD-POO sensing system can achieve displacement measurement with large measurement range, high sensitivity, and resolution.
RESUMO
This paper presents a new method for measuring the linewidth enhancement factor (alpha factor) by the relaxation oscillation (RO) frequency of a laser with external optical feedback (EOF). A measurement formula for alpha is derived which shows the alpha can be determined by only using the RO frequencies and no need to know any other parameters related to the internal or external parameters associated to the laser. Unlike the existing EOF based alpha measurement methods which require an external target has a symmetric reciprocate movement. The proposed method only needs to move the target to be in a few different positions along the light beam. Furthermore, this method also suits for the case with alpha less than 1. Both simulation and experiment are performed to verify the proposed method.
RESUMO
Fiber Bragg grating (FBG) is considered a good candidate for acoustic emission (AE) measurement. The sensing and measurement in traditional FBG-based AE systems are based on the variation in laser intensity induced by the Bragg wavelength shift. This paper presents a sensing system by combining self-mixing interference (SMI) in a laser diode and FBG for AE measurement, aiming to form a new compact and cost-effective sensing system. The measurement model of the overall system was derived. The performance of the presented system was investigated from both aspects of theory and experiment. The results show that the proposed system is able to measure AE events with high resolution and over a wide dynamic frequency range.
RESUMO
In this paper, we demonstrated an improved laser self-mixing grating interferometer (SMGI) with auto-collimation design which can avoid the disturbance from the light feedback of the zero-order diffraction beam. In order to obtain higher optical subdivision, SMGI with multiple-diffraction is implemented. Both theoretical analysis and experimental work show that the proposed system for displacement measurement can achieve high sensitivity and low measurement uncertainty. Using the proposed system, different forms of micro-displacement signals applied on the target (grating) have been reconstructed with accuracy of a few nanometers. The work presented in this paper provides a good way to achieve robust and high precision measurement with compact system configuration.
RESUMO
A laser diode (LD) with external optical feedback can generate undamped relaxation oscillation (RO) under certain operational conditions. The RO frequency can be modified by the external cavity length of the LD and is highly sensitive to the variation of the cavity length (ΔL). This work first investigates the relationship between the RO frequency and ΔL by solving the well-known Lang-Kobayashi (L-K) equations and then verifies the relationship by experiments. Both theory and experiment show that the RO frequency changes in a sawtooth-like quasi-periodic manner with respect to ΔL. The fundamental period is half laser wavelength. This sawtooth feature enables us to achieve period unwrapping and thus extend the measurement range up to a few micrometers. This work shows a possible new solution for achieving high-resolution, large-range displacement measurements.
RESUMO
When a fraction of the light reflected by an external cavity re-enters the laser cavity, both the amplitude and the frequency of the lasing field can be modulated. This phenomenon is called the self-mixing effect (SME). A self-mixing laser diode (SM-LD) is a sensor using the SME. Usually, such LDs operate below the stability boundary where no relaxation oscillation happens. The boundary is determined by the operation condition including the injection current, optical feedback strength and external cavity length. This paper discovers the features of an SM-LD where the LD operates beyond the stability boundary, that is, near the relaxation oscillation (RO) status. We call the signals from such a SM-LD as RO-SM signals to differentiate them from the conventional SM signals reported in the literature. Firstly, simulations are made based on the well-known Lang and Kobayashi (L-K) equations. Then the experiments are conducted on different LDs to verify the simulation results. It shows that a RO-SM signal exhibits high frequency oscillation with its amplitude modulated by a slow time varying envelop which corresponds to the movement of the external target. The envelope has same fringe structure (half-wavelength displacement resolution) with the conventional SM signals. However, the amplitudes of the RO-SM signals are much higher compared to conventional SM signals. The results presented reveal that an SM-LD operating near the RO has potential for achieving sensing with improved sensitivity.
RESUMO
This paper presents the design of a fiber-coupled self-mixing laser diode (SMLD) for non-contact and non-destructive measurement of Young's modulus. By the presented measuring system, the Young's modulus of aluminum 6061 and brass are measured as 70.0 GPa and 116.7 GPa, respectively, showing a good agreement within the standards in the literature and yielding a much smaller deviation and a higher repeatability compared with traditional tensile testing. Its fiber-coupled characteristics make the system quite easy to be installed in many application cases.
RESUMO
In a typical phase-shifting profilometry system for the three-dimensional (3D) shape measurement, shadows often exist in the captured images as the camera and projector probe the object from different directions. The shadow areas do not reflect the fringe patterns which will cause errors in the measurement results. This paper proposed a new method to remove the shadow areas from taking part in the 3D measurement. With the system calibrated and the object reconstructed, the 3D results are mapped on a point-by-point basis into the corresponding positions on the digital micro-mirror device (DMD) of the projector. A set of roles are presented to detect the shadow points based on their mapped positions on the DMD plane. Experimental results are presented to verify the effectiveness of the proposed method.
RESUMO
There are two categories of applications for self-mixing interference (SMI)-based sensing: (1) estimation of parameters associated with a semiconductor laser (SL) and (2) measurement of the metrological quantities of the external target. To achieve high resolution sensing, each category of applications requires knowledge from the other. This paper proposes an improved method that can simultaneously measure the parameters of an SL and the target movement in arbitrary form. Starting with the existing SMI model, we derive a new matrix equation for the measurement. The measurement matrix is built by employing all the available data samples obtained from an SMI signal. The total least squares estimation approach is used to estimate the parameters. The proposed method is verified by both simulations and experiments.
RESUMO
A simple method for measuring the linewidth enhancement factor (LEF) of semiconductor lasers (SLs) is proposed and demonstrated in this paper. This method is based on the self-mixing effect when a small portion of optical signal intensity emitted by the SL reflected by the moving target re-enters the SL cavity, leading to a modulation in the SL's output power intensity, in which the modulated envelope shape depends on the optical feedback strength as well as the LEF. By investigating the relationship between the light phase and power from the well-known Lang and Kobayashi equations, it was found that the LEF can be simply measured from the power value overlapped by two SLs' output power under two different optical feedback strengths. Our proposed method is verified by both simulations and experiments.
RESUMO
This Letter presents a new approach to reducing the errors associated with the shape measurement of a rigid object in motion by means of phase-shifting profilometry. While the work previously reported is only valid for the case of two-dimensional (2-D) movement, the proposed method is effective for a situation in which the object moves in a three-dimensional (3-D) space. First, a new model is proposed to describe the fringe patterns reflected from the object, which is subject to 3-D movement. Then, an iterative least-squares algorithm is presented to estimate the phase map. Experiments show that, in contrast to conventional phase-shifting profilometry, the proposed method is capable of significantly reducing the error caused by the 3-D movement of the object.
RESUMO
In this paper, a temporal shift unwrapping technique is presented for solving the problem of shift wrapping associated with spatial shift estimation (SSE)-based fringe pattern profilometry (FPP). Based on this technique, a novel 3D shape measurement method is proposed, where triangular patterns of two different spatial frequencies are projected. The patterns of the higher frequency are used to implement the FPP, and the one with lower frequency is utilized to achieve shift unwrapping. The proposed method is able to solve the shift unwrapping problem associated with the existing multi-step triangular pattern FPP by projection of an additional fringe pattern. The effectiveness of the proposed method is verified by experimental results, where the same accuracy as existing multi-step triangular pattern FPP can be achieved, but enabling the measurement of objects with complex surface shape and high steps.