Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114334, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38850532

RESUMO

Mechanically activating (MA) channels transduce numerous physiological functions. Tentonin 3/TMEM150C (TTN3) confers MA currents with slow inactivation kinetics in somato- and barosensory neurons. However, questions were raised about its role as a Piezo1 regulator and its potential as a channel pore. Here, we demonstrate that purified TTN3 proteins incorporated into the lipid bilayer displayed spontaneous and pressure-sensitive channel currents. These MA currents were conserved across vertebrates and differ from Piezo1 in activation threshold and pharmacological response. Deep neural network structure prediction programs coupled with mutagenetic analysis predicted a rectangular-shaped, tetrameric structure with six transmembrane helices and a pore at the inter-subunit center. The putative pore aligned with two helices of each subunit and had constriction sites whose mutations changed the MA currents. These findings suggest that TTN3 is a pore-forming subunit of a distinct slow inactivation MA channel, potentially possessing a tetrameric structure.


Assuntos
Canais Iônicos , Humanos , Canais Iônicos/metabolismo , Canais Iônicos/química , Animais , Subunidades Proteicas/metabolismo , Células HEK293 , Mecanotransdução Celular , Camundongos , Mutação , Sequência de Aminoácidos , Proteínas de Membrana/metabolismo , Proteínas de Membrana/química , Bicamadas Lipídicas/metabolismo
2.
Protein Sci ; 32(1): e4520, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36419382

RESUMO

G protein-coupled receptors (GPCRs) are in the spotlight as drug targets due to the fact that multiple research results have verified the correlation between the activation of GPCRs and disease indications. This is because the GPCRs are present across the cell membranes, which interact with either extracellular ligands or other types of compartments and simultaneously mediate intracellular signaling. Despite the importance of the GPCRs as drug targets, they are too difficult to express in soluble forms. Currently, the difficulty of preparing functional GPCRs and the lack of efficient antibody screening methods are the most challenging steps in the discovery of antibodies targeting GPCRs. In this study, we developed a powerful platform that facilitates isolating GPCR-specific antibodies by obviating difficulties in GPCR preparation. The strategies include (i) conjugation of the P9 peptide, an envelope protein of Pseudomonas phi6, to the N-terminus of GPCRs to improve the expression level of the GPCRs in Escherichia coli, (ii) stabilization of the GPCRs in their active forms with amphiphilic poly-γ-glutamate (APG) to shield the seven hydrophobic transmembrane domains, and (iii) further limiting the size of the APG complex to improve the chance to isolate antibodies targeting the proteins-of-interest. Capitalizing on the above strategies, we could prepare GPCR proteins in their active forms as facile as other general-soluble antigen proteins. Furthermore, this protocol was validated to be successful in discovering three individual GPCR-specific antibodies targeting glucagon-like peptide-1 receptor, C-X-C chemokine receptor type 4, and prostaglandin E2 receptor 4 in this study.


Assuntos
Receptores Acoplados a Proteínas G , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Membrana Celular/metabolismo , Anticorpos/metabolismo
4.
Antib Ther ; 5(3): 192-201, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35967907

RESUMO

Background: CC chemokine receptor 7 (CCR7) is a member of G-protein-coupled receptor family and mediates chemotactic migration of immune cells and different cancer cells induced via chemokine (C-C motif) ligand 19 (CCL19) or chemokine (C-C motif) ligand 21 (CCL21). Hence, the identification of blockade antibodies against CCR7 could lead to the development of therapeutics targeting metastatic cancer. Methods: CCR7 was purified and stabilized in its active conformation, and antibodies specific to purified CCR7 were screened from the synthetic M13 phage library displaying humanized scFvs. The in vitro characterization of selected scFvs identified two scFvs that exhibited CCL19-competitive binding to CCR7. IgG4's harboring selected scFv sequences were characterized for binding activity in CCR7+ cells, inhibitory activity toward CCR7-dependent cAMP attenuation, and the CCL19 or CCL21-dependent migration of CCR7+ cells. Results: Antibodies specifically binding to purified CCR7 and CCR7+ cells were isolated and characterized. Two antibodies, IgG4(6RG11) and IgG4(72C7), showed ligand-dependent competitive binding to CCR7 with KD values of 40 nM and 50 nM, respectively. Particularly, IgG4(6RG11) showed antagonistic activity against CCR7, whereas both antibodies significantly blocked the ligand-induced migration and invasion activity of CCR7+ cancer cells. Conclusions: Two antibody clones were successfully identified from a synthetic scFv-displaying phage library using purified recombinant CCR7 as an antigen. Antibodies specifically bound to the surface of CCR7+ cells and blocked CCR7+ cell migration. Particularly, 6RG11 showed antagonist activity against CCR7-dependent cAMP attenuation.

5.
Nat Commun ; 13(1): 1261, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273189

RESUMO

Owing to their excellent durability, tunable physical properties, and biofunctionality, block copolymer-based membranes provide a platform for various biotechnological applications. However, conventional approaches for fabricating block copolymer membranes produce only planar or suspended polymersome structures, which limits their utilization. This study is the first to demonstrate that an electric-field-assisted self-assembly technique can allow controllable and scalable fabrication of 3-dimensional block copolymer artificial cell membranes (3DBCPMs) immobilized on predefined locations. Topographically and chemically structured microwell array templates facilitate uniform patterning of block copolymers and serve as reactors for the effective growth of 3DBCPMs. Modulating the concentration of the block copolymer and the amplitude/frequency of the electric field generates 3DBCPMs with diverse shapes, controlled sizes, and high stability (100% survival over 50 days). In vitro protein-membrane assays and mimicking of human intestinal organs highlight the potential of 3DBCPMs for a variety of biological applications such as artificial cells, cell-mimetic biosensors, and bioreactors.


Assuntos
Células Artificiais , Técnicas Biossensoriais , Humanos , Membranas Artificiais , Polímeros/química , Propriedades de Superfície
6.
Biochem Biophys Res Commun ; 583: 162-168, 2021 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-34739856

RESUMO

Glucagon-like peptide-1 (GLP-1) is a major incretin hormone that enhances the release of insulin from pancreatic ß-cells by activating the glucagon-like peptide-1 receptor (GLP1R), which belongs to secretin-like class B of G protein-coupled receptors (GPCRs). Owing to the absence of small molecule agonist drugs to GLP1R, focus has been placed on chemical modulators that bind to the allosteric site of GLP1R. In this study, we identified novel small-molecule positive allosteric modulators of GLP1R from a chemical library consisting of commercial drug compounds using an assay system that measures the direct interaction between a purified GLP1R and its ligand, exendin-4. Two newly identified compounds, benzethonium and tamoxifen, significantly enhanced the affinity of peptide ligands for GLP1R although they lacked agonist activity by themselves. In addition, benzethonium augmented the ligand-induced accumulation of cAMP in GLP1R-transfected HEK293T cells. These compounds significantly increased the affinity of GLP1R to the alpha-subunit of G proteins, suggesting that they stabilize GLP1R in a conformation with a higher affinity to peptide ligand as well as G proteins. These compounds may lead to the design of an orally active positive allosteric modulator for GLP1R.

7.
Exp Mol Med ; 53(9): 1437-1448, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34588605

RESUMO

Endothelin receptor A (ETA), a class A G-protein-coupled receptor (GPCR), is involved in the progression and metastasis of colorectal, breast, lung, ovarian, and prostate cancer. We overexpressed and purified human endothelin receptor type A in Escherichia coli and reconstituted it with lipid and membrane scaffold proteins to prepare an ETA nanodisc as a functional antigen with a structure similar to that of native GPCR. By screening a human naive immune single-chain variable fragment phage library constructed in-house, we successfully isolated a human anti-ETA antibody (AG8) exhibiting high specificity for ETA in the ß-arrestin Tango assay and effective inhibitory activity against the ET-1-induced signaling cascade via ETA using either a CHO-K1 cell line stably expressing human ETA or HT-29 colorectal cancer cells, in which AG8 exhibited IC50 values of 56 and 51 nM, respectively. In addition, AG8 treatment repressed the transcription of inhibin ßA and reduced the ETA-induced phosphorylation of protein kinase B and extracellular regulated kinase. Furthermore, tumor growth was effectively inhibited by AG8 in a colorectal cancer mouse xenograft model. The human anti-ETA antibody isolated in this study could be used as a potential therapeutic for cancers, including colorectal cancer.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Antagonistas do Receptor de Endotelina A/farmacologia , Receptor de Endotelina A/imunologia , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Antineoplásicos Imunológicos/química , Células CHO , Linhagem Celular Tumoral , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Antagonistas do Receptor de Endotelina A/química , Ensaio de Imunoadsorção Enzimática , Humanos , Camundongos , Engenharia de Proteínas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Biochem Biophys Rep ; 25: 100871, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33367116

RESUMO

Human prostaglandin E2 receptor 4 (EP4) is one of the four subtypes of prostaglandin E2 (PGE2) receptors and belongs to the rhodopsin-type G protein-coupled receptor (GPCR) family. Particularly, EP4 is expressed in various cancer cells and is involved in cancer-cell proliferation by a G protein signaling cascade. To prepare an active form of EP4 for biochemical characterization and pharmaceutical application, this study designed a recombinant protein comprising human EP4 fused to the P9 protein (a major envelope protein of phi6 phage) and overexpressed the P9-EP4 fusion protein in the membrane fraction of E. coli. The solubilized P9-EP4 with sarkosyl (a strong anionic detergent) was purified by affinity chromatography. The purified protein was stabilized with amphiphilic polymers derived from poly-γ-glutamate. The polymer-stabilized P9-EP4 showed specific interaction with the alpha subunits of Gs or Gi proteins, and a high content of α-helical structure by a circular dichroism spectroscopy. Furthermore, the polymer-stabilized P9-EP4 showed strong heat resistance compared with P9-EP4 in detergents. The functional preparation of EP4 and its stabilization with amphiphilic polymers could facilitate both the biochemical characterization and pharmacological applications targeting EP4.

9.
Biosens Bioelectron ; 141: 111404, 2019 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-31202186

RESUMO

The bio-sensory organs of living creatures have evolved to have the best sensing performance. They have 3-dimensional protrusions that have large surface areas to accommodate a large number of membrane proteins such as ion channels and G-protein coupled receptors, resulting in high sensitivity and specificity to target molecules. From the perspective of mimicking this system, BLM, which has been used extensively as a platform for a single nanopore-based sensing systems, has some limitations, i.e., some residual solvent, low mechanical stability, small surface area for appropriate stability, and difficulty in high-throughput fabrication. Herein, to eliminate these limitations, a solvent-free, size-controllable, 3-dimensional free-standing lipid bilayer (3DFLB) structure array with high stability (∼130 h) and high density (∼300,000 cm-2) is proposed, and its structural advantages for efficient and rapid protein reconstitution, compared to BLM, is demonstrated by human 5-HT3A receptor assay as well as α-hemolysin assay. A continuous process of 3DFLB array fabrication, 5-HT3A reconstitution, and 5-HT detections in a microfluidic channel proves the applicability of the proposed structures as a highly-sensitive sensing platform mimicking bio-sensory organs.


Assuntos
Técnicas Biossensoriais/instrumentação , Dispositivos Lab-On-A-Chip , Bicamadas Lipídicas/química , Receptores 5-HT3 de Serotonina/metabolismo , Serotonina/análise , Desenho de Equipamento , Humanos , Proteínas Imobilizadas/metabolismo , Proteínas Recombinantes/metabolismo , Serotonina/metabolismo
10.
Int J Mol Sci ; 19(2)2018 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-29382046

RESUMO

Intrinsically disordered proteins (IDPs) represent approximately 30% of the human genome and play key roles in cell proliferation and cellular signaling by modulating the function of target proteins via protein-protein interactions. In addition, IDPs are involved in various human disorders, such as cancer, neurodegenerative diseases, and amyloidosis. To understand the underlying molecular mechanism of IDPs, it is important to study their structural features during their interactions with target proteins. However, conventional biochemical and biophysical methods for analyzing proteins, such as X-ray crystallography, have difficulty in characterizing the features of IDPs because they lack an ordered three-dimensional structure. Here, we present biochemical and biophysical studies on nucleolar phosphoprotein 140 (Nopp140), which mostly consists of disordered regions, during its interaction with casein kinase 2 (CK2), which plays a central role in cell growth. Surface plasmon resonance and electron paramagnetic resonance studies were performed to characterize the interaction between Nopp140 and CK2. A single-molecule fluorescence resonance energy transfer study revealed conformational change in Nopp140 during its interaction with CK2. These studies on Nopp140 can provide a good model system for understanding the molecular function of IDPs.


Assuntos
Proteínas Intrinsicamente Desordenadas/química , Simulação de Dinâmica Molecular , Proteínas Nucleares/química , Fosfoproteínas/química , Animais , Caseína Quinase II/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Ligação Proteica
11.
Sci Rep ; 7(1): 7577, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28790412

RESUMO

G-protein coupled receptors (GPCRs) play indispensable physiological roles in cell proliferation, differentiation, and migration; therefore, identifying the mechanisms by which ligands bind to GPCRs is crucial for developing GPCR-targeting pharmaceutics and for understanding critical biological functions. Although some structural information is available regarding the interactions between GPCRs and their small molecule ligands, knowledge of how GPCRs interact with their corresponding macromolecule ligands, such as peptides and proteins, remains elusive. In this study, we have developed a novel strategy to investigate the precise ligand recognition mechanisms involved in the interaction of endothelin receptor type A (ETA) with its ligand, endothelin-1 (ET-1); we call this method "directed degeneration" method. Through flow cytometric screening of a randomized ETA library, statistical analysis of the identified sequences, and biochemical studies, the ligand interaction map was successfully obtained.


Assuntos
Sítios de Ligação , Endotelina-1/metabolismo , Receptor de Endotelina A/metabolismo , Animais , Células CHO , Cricetulus , Análise Mutacional de DNA , Citometria de Fluxo , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Receptor de Endotelina A/genética
12.
Biochem Biophys Res Commun ; 487(1): 103-108, 2017 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392399

RESUMO

Human lysophosphatidic acid receptor 2 (LPA2), a member of the G-protein coupled receptor family, mediates lysophosphatidic acid (LPA)-dependent signaling by recruiting various G proteins. Particularly, it is directly implicated in the progression of colorectal and ovarian cancer through G protein signaling cascades. To investigate the biochemical binding properties of LPA2 against various alpha subunits of G protein (Gα), a functional recombinant LPA2 was overexpressed in E. coli membrane with a P9∗ expression system, and the purified protein was stabilized with an amphipathic polymer that had been synthesized by coupling octylamine, glucosamine, and diethyl aminoproylamine at the carboxylic groups of poly-γ-glutamic acid. The purified LPA2 stabilized with the amphipathic polymer showed selective binding activity to the various Gα proteins as well as agonist-dependent dissociation from Gαi3. Understanding the binding properties of LPA2 against various Gα proteins advances the understanding of downstream signaling cascades of LPA2. The functional LPA2 prepared using a P9∗ expression system and an amphipathic polymer could also facilitate the development of LPA2-targeting drugs.


Assuntos
Escherichia coli/metabolismo , Subunidades alfa de Proteínas de Ligação ao GTP/química , Vírus da Anemia Infecciosa Equina/genética , Receptores de Ácidos Lisofosfatídicos/química , Receptores de Ácidos Lisofosfatídicos/fisiologia , Sítios de Ligação , Clonagem Molecular/métodos , Escherichia coli/genética , Humanos , Ligação Proteica
13.
Extremophiles ; 20(5): 723-31, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27377296

RESUMO

Oligopeptide-binding proteins (Opps) are part of the ATP-binding cassette system, playing a crucial role in nutrient uptake and sensing the external environment in bacteria, including hyperthermophiles. Opps serve as a binding platform for diverse peptides; however, how these peptides are recognized by Opps is still largely unknown and few crystal structures of Opps from hyperthermophiles have been determined. To facilitate such an understanding, the crystal structure of a putative Opp, OppA from Thermotoga maritima (TmOppA), was solved at 2.6-Å resolution in the open conformation. TmOppA is composed of three domains. The N-terminal domain consists of twelve strands, nine helices, and four 310 helices, and the C-terminal domain consists of five strands, ten helices, and one 310 helix. These two domains are connected by the linker domain, which consists of two strands, three helices, and three 310 helices. Based on structural comparisons of TmOppA with other OppAs and binding studies, we suggest that TmOppA might be a periplasmic Opp. The most distinct feature of TmOppA is the insertion of two helices, which are lacking in other OppAs. A cavity volume between the N-terminal and C-terminal domains is suggested to be responsible for binding peptides of various lengths.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte/química , Lipoproteínas/química , Periplasma/metabolismo , Thermotoga maritima/química , Trifosfato de Adenosina/metabolismo , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Ligação Proteica , Thermotoga maritima/genética , Thermotoga maritima/metabolismo
14.
Biochem Biophys Res Commun ; 477(2): 181-7, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27297113

RESUMO

Nucleolar phosphoprotein 140 (Nopp140) is a nucleolar protein, more than 80% of which is disordered. Previous studies have shown that the C-terminal region of Nopp140 (residues 568-596) interacts with protein kinase CK2α, and inhibits the catalytic activity of CK2. Although the region of Nopp140 responsible for the interaction with CK2α was identified, the structural features and the effect of this interaction on the structure of Nopp140 have not been defined due to the difficulty of structural characterization of disordered protein. In this study, the disordered feature of Nopp140 and the effect of CK2α on the structure of Nopp140 were examined using single-molecule fluorescence resonance energy transfer (smFRET) and electron paramagnetic resonance (EPR). The interaction with CK2α was increased conformational rigidity of the CK2α-interacting region of Nopp140 (Nopp140C), suggesting that the disordered and flexible conformation of Nopp140C became more rigid conformation as it binds to CK2α. In addition, site specific spin labeling and EPR analysis confirmed that the residues 574-589 of Nopp140 are critical for binding to CK2α. Similar technical approaches can be applied to analyze the conformational changes in other IDPs during their interactions with binding partners.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/ultraestrutura , Fosfoproteínas/química , Fosfoproteínas/ultraestrutura , Sítios de Ligação , Caseína Quinase II/química , Caseína Quinase II/ultraestrutura , Ativação Enzimática , Proteínas Intrinsicamente Desordenadas , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Especificidade por Substrato
15.
Proc Natl Acad Sci U S A ; 113(18): E2480-8, 2016 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-27099293

RESUMO

DNA-binding repressors are involved in transcriptional repression in many organisms. Disabling a repressor is a crucial step in activating expression of desired genes. Thus, several mechanisms have been identified for the removal of a stably bound repressor (Rep) from the operator. Here, we describe an uncharacterized mechanism of noncanonical DNA binding and induction by a Rep from the temperate Salmonella phage SPC32H; this mechanism was revealed using the crystal structures of homotetrameric Rep (92-198) and a hetero-octameric complex between the Rep and its antirepressor (Ant). The canonical method of inactivating a repressor is through the competitive binding of the antirepressor to the operator-binding site of the repressor; however, these studies revealed several noncanonical features. First, Ant does not compete for the DNA-binding region of Rep. Instead, the tetrameric Ant binds to the C-terminal domains of two asymmetric Rep dimers. Simultaneously, Ant facilitates the binding of the Rep N-terminal domains to Ant, resulting in the release of two Rep dimers from the bound DNA. Second, the dimer pairs of the N-terminal DNA-binding domains originate from different dimers of a Rep tetramer (trans model). This situation is different from that of other canonical Reps, in which two N-terminal DNA-binding domains from the same dimeric unit form a dimer upon DNA binding (cis model). On the basis of these observations, we propose a noncanonical model for the reversible inactivation of a Rep by an Ant.


Assuntos
DNA Viral/química , Modelos Químicos , Modelos Moleculares , Proteínas Repressoras/química , Proteínas Repressoras/ultraestrutura , Bacteriófagos/química , Bacteriófagos/genética , Sítios de Ligação , Simulação por Computador , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica
16.
Proc Natl Acad Sci U S A ; 112(40): 12372-7, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26392564

RESUMO

Intercellular bridges are a conserved feature of spermatogenesis in mammalian germ cells and derive from arresting cell abscission at the final stage of cytokinesis. However, it remains to be fully understood how germ cell abscission is arrested in the presence of general cytokinesis components. The TEX14 (testis-expressed gene 14) protein is recruited to the midbody and plays a key role in the inactivation of germ cell abscission. To gain insights into the structural organization of TEX14 at the midbody, we have determined the crystal structures of the EABR [endosomal sorting complex required for transport (ESCRT) and ALIX-binding region] of CEP55 bound to the TEX14 peptide (or its chimeric peptides) and performed functional characterization of the CEP55-TEX14 interaction by multiexperiment analyses. We show that TEX14 interacts with CEP55-EABR via its AxGPPx3Y (Ala793, Gly795, Pro796, Pro797, and Tyr801) and PP (Pro803 and Pro804) sequences, which together form the AxGPPx3YxPP motif. TEX14 competitively binds to CEP55-EABR to prevent the recruitment of ALIX, which is a component of the ESCRT machinery with the AxGPPx3Y motif. We also demonstrate that a high affinity and a low dissociation rate of TEX14 to CEP55, and an increase in the local concentration of TEX14, cooperatively prevent ALIX from recruiting ESCRT complexes to the midbody. The action mechanism of TEX14 suggests a scheme of how to inactivate the abscission of abnormal cells, including cancer cells.


Assuntos
Células Germinativas/metabolismo , Testículo/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Expressão Gênica , Células HeLa , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Camundongos Endogâmicos C57BL , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/genética , Testículo/citologia , Fatores de Transcrição/genética
17.
Mol Immunol ; 67(2 Pt B): 350-6, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26153451

RESUMO

In contrast to the glycosylated IgG antibodies secreted by human plasma cells, the aglycosylated IgG antibodies produced by bacteria are unable to bind FcγRs expressed on the surface of immune effector cells and cannot trigger immune effector functions. To avoid glycan heterogeneity problems, elicit novel effector functions, and produce therapeutic antibodies with effector function using a simple bacterial expression system, FcγRI-specific Fc-engineered aglycosylated antibodies, Fc11 (E382V) and Fc (E382V/M428I), containing mutations in the CH3 region, were isolated in a previous study. To elucidate the relationship between FcγRI binding affinity and the structural dynamics of the upper CH2 region of Fc induced by the CH3 mutations, the conformational variation of Fc variants was observed by single-molecule Förster resonance energy transfer (FRET) analysis using alternating-laser excitation (ALEX). In sharp contrast to wild-type Fc, which exhibits a highly dynamic upper CH2 region, the mutations in the CH3 region significantly stabilized the upper CH2 region. The results indicate that conformational plasticity, as well as the openness of the upper CH2 region, is critical for FcγR binding and therapeutic effector functions of IgG antibodies.


Assuntos
Fragmentos Fc das Imunoglobulinas/química , Imunoglobulina G/química , Receptores de IgG/metabolismo , Animais , Cristalografia por Raios X , Eletroforese em Gel de Poliacrilamida , Transferência Ressonante de Energia de Fluorescência , Humanos , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/genética , Camundongos , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação Puntual/genética , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica
18.
Biophys J ; 107(7): 1601-8, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25296312

RESUMO

In Alzheimer's disease, cytochrome c-dependent apoptosis is a crucial pathway in neuronal cell death. Although beta-amyloid (Aß) oligomers are known to be the neurotoxins responsible for neuronal cell death, the underlying mechanisms remain largely elusive. Here, we report that the oligomeric form of synthetic Aß of 42 amino acids elicits death of HT-22 cells. But, when expression of a bcl-2 family protein BAK is suppressed by siRNA, Aß oligomer-induced cell death was reduced. Furthermore, significant reduction of cytochrome c release was observed with mitochondria isolated from BAK siRNA-treated HT-22 cells. Our in vitro experiments demonstrate that Aß oligomers bind to BAK on the membrane and induce apoptotic BAK pores and cytochrome c release. Thus, the results suggest that Aß oligomers function as apoptotic ligands and hijack the intrinsic apoptotic pathway to cause unintended neuronal cell death.


Assuntos
Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/farmacologia , Apoptose/efeitos dos fármacos , Citocromos c/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Multimerização Proteica , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Linhagem Celular , Camundongos , Fragmentos de Peptídeos/metabolismo , Porosidade , Estrutura Secundária de Proteína , alfa-Sinucleína/farmacologia , Proteínas tau/farmacologia
19.
Protein Sci ; 23(12): 1800-7, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25283538

RESUMO

Difficulties in the extraction of membrane proteins from cell membrane and their solubilization in native conformations have hindered their structural and biochemical analysis. To overcome these difficulties, an amphipathic polypeptide was synthesized by the conjugation of octyl and glucosyl groups to the carboxyl groups of poly-γ-glutamic acid (PGA). This polymer, called amphipathic PGA (APG), self-assembles as mono-disperse oligomers consisted of 4-5 monomers. APG shows significantly low value of critical micelle concentration and stabilization activity toward membrane proteins. Most of the sodium dodecyl sulfate (SDS)-solubilized membrane proteins from Escherichia coli remain soluble state in the presence of APG even after the removal of SDS. In addition, APG stabilizes purified 7 transmembrane proteins such as bacteriorhodopsin and human endothelin receptor Type A (ETA ) in their active conformations. Furthermore, ETA in complex with APG is readily inserted into liposomes without disrupting the integrity of liposomes. These properties of APG can be applied to overcome the difficulties in the stabilization and reconstitution of membrane proteins.


Assuntos
Proteínas de Membrana/química , Ácido Poliglutâmico/análogos & derivados , Tensoativos/química , Humanos , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Ácido Poliglutâmico/síntese química , Ácido Poliglutâmico/química , Estabilidade Proteica , Dodecilsulfato de Sódio/química , Solubilidade , Tensoativos/síntese química
20.
Protein Expr Purif ; 101: 146-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24993791

RESUMO

Rhoptry protein 6 (ROP6) from Toxoplasma gondii is a 480-amino acid protein with no homology to any reported excretory or secretory protein. Especially, unlike the many other rhoptry protein types, ROP6 does not have a kinase domain. The biochemical and biophysical properties of ROP6 are unknown. Here, we investigated its structure using an in silico analysis method and overexpression and purification using an Escherichia coli system. The protein was purified to more than 85% homogeneity using immobilized metal affinity chromatography in denaturing conditions. After purification, ROP6 showed slow migration in SDS-PAGE, including fast proteolysis. This implies that ROP6 has a high percentage of flexible regions or extended loop structures. Secondary structure prediction and prediction of intrinsically disordered regions by using various bioinformatics tools, indicated that approximately 60% of ROP6 is predicted to be intrinsically disordered or random coil regions. These observations indicate that ROP6 is an intrinsically disordered protein.


Assuntos
Proteínas Intrinsicamente Desordenadas/genética , Proteínas de Protozoários/genética , Toxoplasma/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Cromatografia de Afinidade , Clonagem Molecular , Biologia Computacional , Eletroforese em Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Proteínas Intrinsicamente Desordenadas/biossíntese , Estrutura Secundária de Proteína , Proteínas de Protozoários/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA