Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fitoterapia ; 175: 105924, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38537886

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disease, and accumulating evidence suggested that proteostatic imbalance is a key feature of the disease. Traditional Chinese medicine exhibits a multi-target therapeutic effect, making it highly suitable for addressing protein homeostasis imbalance in AD. Dendrobium officinale is a traditional Chinese herbs commonly used as tonic agent in China. In this study, we investigated protection effects of D. officinale phenolic extract (SH-F) and examined its underlying mechanisms by using transgenic Caenorhabditis elegans models. We found that treatment with SH-F (50 µg/mL) alleviated Aß and tau protein toxicity in worms, and also reduced aggregation of polyglutamine proteins to help maintain proteostasis. RNA sequencing results showed that SH-F treatment significantly affected the proteolytic process and autophagy-lysosomal pathway. Furthermore, we confirmed that SH-F showing maintainance of proteostasis was dependent on bec-1 by qRT-PCR analysis and RNAi methods. Finally, we identified active components of SH-F by LC-MS method, and found the five major compounds including koaburaside, tyramine dihydroferulate, N-p-trans-coumaroyltyramine, naringenin and isolariciresinol are the main bioactive components responsible for the anti-AD activity of SH-F. Our findings provide new insights to develop a treatment strategy for AD by targeting proteostasis, and SH-F could be an alternative drug for the treatment of AD.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Autofagia , Caenorhabditis elegans , Dendrobium , Modelos Animais de Doenças , Extratos Vegetais , Proteostase , Animais , Caenorhabditis elegans/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Dendrobium/química , Proteostase/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Peptídeos beta-Amiloides/metabolismo , Extratos Vegetais/farmacologia , Animais Geneticamente Modificados , Proteínas tau/metabolismo , Fenóis/farmacologia , Fenóis/isolamento & purificação , Flavanonas/farmacologia , Medicamentos de Ervas Chinesas/farmacologia , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação
2.
Biogerontology ; 21(2): 245-256, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31960183

RESUMO

Coix seed oil (CSO) has many beneficial effects, but there is limited research on its influence on the processes and mechanisms related to senescence. Here, we used Caenorhabditis elegans as an in vivo model to investigate CSO's bioeffects on longevity. CSO (1 mg/mL) significantly extended the mean lifespan of C. elegans by over 22.79% and markedly improved stress resistance. Gene-specific mutant studies showed that the CSO-mediated increase in life expectancy was dependent on mev-1, hsf-1 and daf-16, but not daf-2. Furthermore, CSO significantly upregulated stress-inducible genes, including daf-16 and its downstream genes (sod-3, hsp-16.2 and gst-4). In addition, four major fatty acids, linoleic, oleic, palmitic and stearic, played leading roles in C. elegans' extended lifespan. Thus, CSO increased the life expectancy of, and enhanced the stress resistance in, C. elegans mainly through daf-16 and its downstream genes, but not through the insulin/insulin-like growth factor 1 signaling pathway.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Coix , Longevidade/efeitos dos fármacos , Óleos de Plantas/administração & dosagem , Sementes , Estresse Fisiológico/efeitos dos fármacos , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Coix/química , Citocromos b/genética , Citocromos b/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Óleos de Plantas/isolamento & purificação , Sementes/química , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Zhongguo Zhong Yao Za Zhi ; 44(5): 948-953, 2019 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-30989854

RESUMO

Longshengzhi capsule consisting of 12 herbs is widely used in clinically treating cerebral ischemia during recovery period.In this study,in order to investigate the consistency of different batches of Longshengzhi capsules,a high performance liquid chromatography coupled to triple quadrupole mass spectrometry method(HPLC-QQQ/MS) was developed for the determination of 19 representative components in Longshengzhi Capsules within 9 min. Methodology validation indicated this method was simple,rapid,accurate,highly sensitive and reproducible,and it could be used for the content determination of components in Longshengzhi Capsules. The consistency analysis results showed that paeoniflorin and calycosin-7-glucoside in Longshengzhi Capsules had the highest content; RSD value of total content of 19 compounds was 5. 2% and the RSD value of main compounds such as astragaloside and calycosin-7-glucoside was all less than 15%,reflecting good consistency among different batches. This study has provided a scientific method and basis for the quality control and consistency evaluation of Longshengzhi Capsules.


Assuntos
Medicamentos de Ervas Chinesas/análise , Medicamentos de Ervas Chinesas/normas , Cápsulas , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Reprodutibilidade dos Testes
4.
Free Radic Biol Med ; 129: 310-322, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30266681

RESUMO

Lonicera japonica (LJ) is widely used as the local medicine to improve body and prevent ills in China, but mechanisms of its healthy beneficial effects remain largely unclear. Here, we evaluated the anti-aging and healthspan promoting activities of 75% ethanol extract of LJ (LJ-E) in the animal model Caenorhabditis elegans. Our results showed that LJ-E (500 µg/mL) treatment enhanced the mean lifespan of worms by over 21.87% and significantly improved age-associated physiological functions in C. elegans. The 500 µg/mL concentration of LJ-E enhanced the survival rates under oxidative and thermal stresses, and decreased reactive oxygen species (ROS) levels and fat accumulation in the worms. Gene-specific mutant studies showed that LJ-E-mediated lifespan extension was dependent on mev-1, daf-2, daf-16, and hsf-1, but not eat-2 genes. LJ-E could upregulate stress-inducible genes, viz., hsp-16.2, sod-3 and mtl-1. Moreover, we found that the D1086.10 protein interacted with superoxide dismutase (SOD)-3 by functional protein association networks analysis according to RNA-sequencing results. It was confirmed that D1086.10 was needed to promote longevity, and positively regulated expression of sod-3 by using D1086.10 mutants. Furthermore, LJ-E significantly delayed amyloid ß-protein induced paralysis in CL4176 strain. Given the important role of autophagy in aging and protein homeostasis, we observed that LJ-E could remarkably increase the mRNA expression of autophagy gene bec-1 in CL4176 strain, and decrease expression of autophagy substrate p62 protein by more than 40.0% in BC12921 strain. Finally, we found that combination composed of three major compounds (54 µg/mL chlorogenic acid, 15 µg/mL 1,5-dicaffeoylquinic acid and 7.5 µg/mL 1,3-dicaffeoylquinic acid) of 500 µg/mL LJ-E could significantly delay paralysis in CL4176 worms caused by Aß toxicity, comparable to that of LJ-E. Overall, our study may have important implications in using Lonicera japonica to promote healthy aging and have a potency to design therapeutics for age-related diseases.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Lonicera/química , Espécies Reativas de Oxigênio/antagonistas & inibidores , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/crescimento & desenvolvimento , Tecido Adiposo/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Ácido Clorogênico/farmacologia , Cinamatos/farmacologia , Citocromos b/genética , Citocromos b/metabolismo , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/isolamento & purificação , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Longevidade/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Paralisia/prevenção & controle , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA