RESUMO
BACKGROUND: Ferroptosis, a novel iron-ion-dependent metabolic cell death mode with lipid peroxides as the main driving substrate, plays an irreplaceable role in the development and preventive treatment of hepatocellular carcinoma. Curcumin has potent pharmacological anti-tumor effects. AIM OF THE STUDY: We aimed to evaluate the ex vivo and in vivo cancer inhibitory activity of curcumin and its specific mechanism of action. MATERIALS AND METHODS: We used the hepatocellular carcinoma cell lines HepG2 and SMMC7721 to assess the direct inhibition of hepatocellular carcinoma proliferation by curcumin in vitro and a tumor xenograft model to evaluate the in vivo cancer inhibitory effect of curcumin. RESULTS: In this study, we found that ferroptosis's inhibitors specifically reversed the curcumin-induced cell death pattern in HCC. After curcumin intervention, there was a substantial increase in MDA levels and iron ion levels, and a decrease in intracellular GSH levels. Meanwhile, the expression of GPX4 and SLC7A11 was significantly reduced at the protein levels, while ACSL4 and PTGS2 expression was significantly increased. CONCLUSIONS: This study showed that curcumin significantly decreased the proliferation of HCC cells and significantly increased the sensitivity of ferroptosis. These results suggest that ACSL4 is a viable target for curcumin-induced ferroptosis in treating HCC.
Assuntos
Carcinoma Hepatocelular , Proliferação de Células , Coenzima A Ligases , Curcumina , Ferroptose , Neoplasias Hepáticas , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto , Ferroptose/efeitos dos fármacos , Curcumina/farmacologia , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Animais , Camundongos , Coenzima A Ligases/metabolismo , Regulação para Cima/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Camundongos Nus , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Células Hep G2 , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Masculino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacosRESUMO
The intricate physiological and pathological diversity of the Renin-Angiotensin-Aldosterone System (RAAS) underpins its role in maintaining bodily equilibrium. This paper delves into the classical axis (Renin-ACE-Ang II-AT1R axis), the protective arm (ACE2-Ang (1-7)-MasR axis), the prorenin-PRR-MAP kinases ERK1/2 axis, and the Ang IV-AT4R-IRAP cascade of RAAS, examining their functions in both physiological and pathological states. The dysregulation or hyperactivation of RAAS is intricately linked to numerous diseases, including cardiovascular disease (CVD), renal damage, metabolic disease, eye disease, Gastrointestinal disease, nervous system and reproductive system diseases. This paper explores the pathological mechanisms of RAAS in detail, highlighting its significant role in disease progression. Currently, in addition to traditional drugs like ACEI, ARB, and MRA, several novel therapeutics have emerged, such as angiotensin receptor-enkephalinase inhibitors, nonsteroidal mineralocorticoid receptor antagonists, aldosterone synthase inhibitors, aminopeptidase A inhibitors, and angiotensinogen inhibitors. These have shown potential efficacy and application prospects in various clinical trials for related diseases. Through an in-depth analysis of RAAS, this paper aims to provide crucial insights into its complex physiological and pathological mechanisms and offer valuable guidance for developing new therapeutic approaches. This comprehensive discussion is expected to advance the RAAS research field and provide innovative ideas and directions for future clinical treatment strategies.
RESUMO
Acute hepatopancreatic necrosis disease (AHPND) is a highly contagious and lethal disease of shrimp caused by Vibrio strains carrying the virulence plasmid (pAHPND) containing the pirAB virulence genes. Through analysis of plasmid sequence similarity, clustering, and phylogeny, a horizontal transfer element similar to IS91 was discovered within the pAHPND plasmid. Additionally, two distinct clades of plasmids related to pAHPND (designated as pAHPND-r1 and pAHPND-r2) were identified, which may serve as potential parental plasmids for pAHPND. The available evidence, including the difference in G+C content between the plasmid and its host, codon usage preference, and plasmid recombination event prediction, suggests that the formation of the pAHPND plasmid in the Vibrio owensii strain was likely due to the synergistic effect of the recombinase RecA and the associated proteins RecBCD on the pAHPND-r1 and pAHPND-r2, resulting in the recombination and formation of the precursor plasmid for pAHPND (pre-pAHPND). The emergence of pAHPND was found to be a result of successive insertions of the horizontal transfer elements of pirAB-Tn903 and IS91-like segment, which led to the deletion of one third of the pre-pAHPND. This plasmid was then able to spread horizontally to other Vibrio strains, contributing to the epidemics of AHPND. These findings shed light on previously unknown mechanisms involved in the emergence of pAHPND and improve our understanding of the disease's spread.
Assuntos
Recombinação Homóloga , Penaeidae , Plasmídeos , Vibrio , Vibrio/genética , Vibrio/patogenicidade , Animais , Plasmídeos/genética , Virulência/genética , Penaeidae/microbiologia , Vibrioses/veterinária , Vibrioses/microbiologia , Filogenia , Elementos de DNA TransponíveisRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC), currently ranking as the third most lethal malignancy, poses a grave threat to human health. Ferroptosis, a form of programmed cell demise, has emerged as a promising therapeutic target in HCC treatment. In this study, we investigated the impact of ginsenoside RK1 on ferroptosis induction in HCC cells and elucidated the underlying mechanisms. METHODS: The HCC cell line HepG2 was utilized to evaluate the effects of ginsenoside RK1. Distinct dosages of ginsenoside RK1 (25 µM, 50 µM, and 100 µM) were selected based on half-maximal inhibitory concentration (IC50) values. Cellular viability was assessed using a CCK8 assay, cytotoxicity was measured via lactate dehydrogenase (LDH) release assay, and colony-forming ability was evaluated using the clone formation assay. Various inhibitors targeting apoptosis (Z-VAD-FMK 20 µM), necrosis (Nec-1, 10 µM), and ferroptosis (Fer-1, 10 µM; Lip-1, 1 µM) were employed to assess ginsenoside RK1's impact on cell demise. Intracellular levels of key ions, including glutathione (GSH), malondialdehyde (MDA), and iron ions, were quantified, and the protein expression levels of ferroptosis-related genes were evaluated. The sensitivity of HCC cells to ferroptosis induction by ginsenoside RK1 was examined following the overexpression and silencing of the aforementioned target genes. RESULTS: Ginsenoside RK1 exhibited an inhibitory effect on HCC cells with an IC50 value of approximately 20 µM. It attenuated cellular viability and colony-forming capacity in a dose-dependent manner, concurrently reducing intracellular GSH levels and increasing intracellular Malondialdehyde (MDA) and iron ion contents. Importantly, cell demise induced by ginsenoside RK1 was specifically counteracted by ferroptosis inhibitors. Furthermore, the modulation of Ferroptosis suppressor protein 1 (FSP1) expression influenced the ability of ginsenoside RK1 to induce ferroptosis. FSP1 overexpression or silencing enhanced or inhibited ferroptosis induction by ginsenoside RK1, respectively. CONCLUSIONS: Ginsenoside RK1 enhances ferroptosis in hepatocellular carcinoma through an FSP1-dependent pathway.
RESUMO
The metabolic reconfiguration of tumor cells constitutes a pivotal aspect of tumor proliferation and advancement. This study delves into two primary facets of tumor metabolism: the Warburg effect and mitochondrial metabolism, elucidating their contributions to tumor dominance. The Warburg effect facilitates efficient energy acquisition by tumor cells through aerobic glycolysis and lactic acid fermentation, offering metabolic advantages conducive to growth and proliferation. Simultaneously, mitochondrial metabolism, serving as the linchpin of sustained tumor vitality, orchestrates the tricarboxylic acid cycle and electron transport chain, furnishing a steadfast and dependable wellspring of biosynthesis for tumor cells. Regarding targeted therapy, this discourse examines extant strategies targeting tumor glycolysis and mitochondrial metabolism, underscoring their potential efficacy in modulating tumor metabolism while envisaging future research trajectories and treatment paradigms in the realm of tumor metabolism. By means of a thorough exploration of tumor metabolism, this study aspires to furnish crucial insights into the regulation of tumor metabolic processes, thereby furnishing valuable guidance for the development of novel therapeutic modalities. This comprehensive deliberation is poised to catalyze advancements in tumor metabolism research and offer novel perspectives and pathways for the formulation of cancer treatment strategies in the times ahead.
Assuntos
Mitocôndrias , Neoplasias , Efeito Warburg em Oncologia , Humanos , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Glicólise , Animais , Metabolismo Energético , Ciclo do Ácido CítricoRESUMO
Lung cancer is a leading cause of cancer-related mortality worldwide, with non-small cell lung cancer (NSCLC) constituting the majority, and its main subtype being lung adenocarcinoma (LUAD). Despite substantial advances in LUAD diagnosis and treatment, early diagnostic biomarkers inadequately fulfill clinical requirements. Thus, we conducted bioinformatics analysis to identify potential biomarkers and corresponding therapeutic drugs for early-stage LUAD patients. Here we identified a total of 10 differentially expressed genes (DEGs) with survival significance through the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Subsequently, we identified a promising small molecule drug, Aminopurvalanol A, based on the 10 key genes using the L1000FWD application, which was validated by molecular docking followed by in vivo and in vitro experiments. The results highlighted TOP2A, CDH3, ASPM, CENPF, SLC2A1, and PRC1 as potential detection biomarkers for early LUAD. We confirmed the efficacy and safety of Aminopurvalanol A, providing valuable insights for the clinical management of LUAD.
Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Simulação de Acoplamento Molecular , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Estadiamento de Neoplasias , Linhagem Celular Tumoral , Biologia Computacional/métodos , Camundongos Nus , Terapia de Alvo Molecular , Camundongos , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Ferroptosis is an iron ion-dependent, regulatory cell death modality driven by intracellular lipid peroxidation that plays a key role in the development of HCC. Studies have shown that various clinical agents (e.g., sorafenib) have ferroptosis inducer-like effects and can exert therapeutic effects by modulating different key factors in the ferroptosis pathway. This implies that targeting tumor cell ferroptosis may be a very promising strategy for tumor therapy. In this paper, we summarize the prerequisites and defense systems for the occurrence of ferroptosis and the regulatory targets of drug-mediated ferroptosis action in HCC, the differences and connections between ferroptosis and other programmed cell deaths. We aim to summarize the theoretical basis, classical inducers of ferroptosis and research progress of ferroptosis in HCC cells, clued to the treatment of HCC by regulating ferroptosis network. Further investigation of the specific mechanisms of ferroptosis and the development of hepatocellular carcinoma and interventions at different stages of hepatocellular carcinoma will help us to deepen our understanding of hepatocellular carcinoma, with a view to providing new and more precise preventive as well as therapeutic measures for patients.
RESUMO
Mycophenolate mofetil (MMF) is a viable therapeutic option against various immune disorders as a chemotherapeutic agent. Nevertheless, its application has been undermined by the gastrotoxic metabolites (mycophenolic acid glucuronide, MPAG) produced by microbiome-associated ß-glucuronidase (ßGUS). Therefore, controlling microbiota-produced ßGUS underlines the potential strategy to improve MMF efficacy by overcoming the dosage limitation. In this study, the octyl gallate (OG) was identified with promising inhibitory activity on hydrolysis of PNPG in our high throughput screening based on a chemical collection of approximately 2000 natural products. Furthermore, OG was also found to inhibit a broad spectrum of BGUSs, including mini-Loop1, Loop 2, mini-Loop 2, and mini-Loop1,2. The further in vivo experiments demonstrated that administration of 20â¯mg/kg OG resulted in predominant reduction in the activity of BGUSs while displayed no impact on the overall fecal microbiome in mice. Furthermore, in the MMF-induced colitis model, the administration of OG at a dosage of 20â¯mg/kg effectively mitigated the gastrointestinal toxicity, and systematically reverted the colitis phenotypes. These findings indicate that the OG holds promising clinical potential for the prevention of MMF-induced gastrointestinal toxicity by inhibition of BGUSs and could be developed as a combinatorial therapy with MFF for better clinical outcomes.
Assuntos
Colite , Ácido Gálico/análogos & derivados , Microbioma Gastrointestinal , Camundongos , Animais , Ácido Micofenólico/farmacologia , Ácido Micofenólico/uso terapêutico , Imunossupressores/uso terapêutico , Glucuronidase/metabolismo , Bactérias/metabolismo , Colite/tratamento farmacológicoRESUMO
In this paper, we report results on the electronic structure and transport properties of molecular junctions fabricated via conducting probe atomic force microscopy (CP-AFM) using self-assembled monolayers (SAMs) of n-alkyl chains anchored with acetylene groups (CnA; n = 8, 9, 10, and 12) on Ag, Au, and Pt electrodes. We found that the current-voltage (I-V) characteristics of CnA CP-AFM junctions can be very accurately reproduced by the same off-resonant single-level model (orSLM) successfully utilized previously for many other junctions. We demonstrate that important insight into the energy-level alignment can be gained from experimental data of transport (processed via the orSLM) and ultraviolet photoelectron spectroscopy combined with ab initio quantum chemical information based on the many-body outer valence Green's function method. Measured conductance GAg < GAu < GPt is found to follow the same ordering as the metal work function ΦAu < ΦAu < ΦPt, a fact that points toward a transport mediated by an occupied molecular orbital (MO). Still, careful data analysis surprisingly revealed that transport is not dominated by the ubiquitous HOMO but rather by the HOMO-1. This is an important difference from other molecular tunnel junctions with p-type HOMO-mediated conduction investigated in the past, including the alkyl thiols (CnT) to which we refer in view of some similarities. Furthermore, unlike in CnT and other junctions anchored with thiol groups investigated in the past, the AFM tip causes in CnA an additional MO shift, whose independence of size (n) rules out significant image charge effects. Along with the prevalence of the HOMO-1 over the HOMO, the impact of the "second" (tip) electrode on the energy level alignment is another important finding that makes the CnA and CnT junctions different. What ultimately makes CnA unique at the microscopic level is a salient difference never reported previously, namely, that CnA's alkyne functional group gives rise to two energetically close (HOMO and HOMO-1) orbitals. This distinguishes the present CnA from the CnT, whose HOMO stemming from its thiol group is well separated energetically from the other MOs.
RESUMO
Gene knockout is a widely used technique for engineering bacterial genomes, investigating the roles of genes in metabolism, and conferring biological characteristics. Herein, we developed a rapid, efficient, and simple method for the knockout of long gene cassettes in Pseudomonas spp., based on a traditional allelic exchange strategy. The upstream and downstream sequences of the target gene cluster to be deleted were amplified using primers with 5'-end sequences identical to the multiple cloning sites of a suicide plasmid (mutant allele insert vector). The sequences were then fused with the linearized suicide plasmid in one step via seamless cloning. The resulting allelic exchange vector (recombinant plasmid) was introduced from the donor strain (Escherichia coli SM 10) into recipient cells (Pseudomonas putida, P. composti, and P. khazarica) via conjugation. Single-crossover merodiploids (integrates the vector into host chromosome by homologous recombination) were screened based on antibiotic resistance conferred by the plasmid, and double-crossover haploids (deleting the target gene clusters and inserted alien plasmid backbone) were selected using sucrose-mediated counterselection. Unlike other approaches, the method described herein introduces no selective marker genes into the genomes of the knockout mutants. Using our method, we successfully deleted polysaccharide-encoding gene clusters in P. putida, P. composti, and P. khazarica and generated four mutants with single-gene cassette deletions up to 18 kbp and one mutant with double-gene cassette deletion of approximately 34 kbp. Collectively, our results indicate that this method is ideal for the deletion of long genetic sequences, yielding seamless mutants of various Pseudomonas spp.
Assuntos
Técnicas de Inativação de Genes , Plasmídeos , Pseudomonas , Pseudomonas/genética , Técnicas de Inativação de Genes/métodos , Plasmídeos/genética , Alelos , Família Multigênica , Vetores Genéticos/genéticaRESUMO
RNA viruses in marine environments have long been recognized as major players in the virosphere. In this study, the complete genome sequence of an RNA virus from Yangshan Harbor, named marine RNA virus Yangshan-LWW (YS-LWW), was obtained based on metavirome assembly. The genome of YS-LWW is 8839 nt in length and contains two open reading frames (ORFs). Both RdRP- and whole-genome-based phylogenetic analysis showed that YS-LWW, together with 45 viral isolates with sequences in public datasets, represents a new species in the genus Locarnavirus of the family Marnaviridae. PCR and public dataset mining indicate that YS-LWW and YS-LWW-like viruses have been widely detected in coastal and freshwater environments, suggesting that they might play a significant role in aquatic ecosystems.
Assuntos
Ecossistema , Vírus de RNA , Filogenia , Vírus de RNA/genética , Fases de Leitura Aberta , Reação em Cadeia da PolimeraseRESUMO
Viruses in aquatic ecosystems exhibit remarkable abundance and diversity. However, scattered studies have been conducted to mine uncultured viruses and identify them taxonomically in lake water. Here, whole genomes (29-173 kbp) of seven uncultured dsDNA bacteriophages were discovered in Dishui Lake, the largest artificial lake in Shanghai. We analyzed their genomic signatures and found a series of viral auxiliary metabolic genes closely associated with protein synthesis and host metabolism. Dishui Lake phages shared more genes with uncultivated environmental viruses than with reference viruses based on the gene-sharing network classification. Phylogeny of proteomes and comparative genomics delineated three new genera within two known viral families of Kyanoviridae and Autographiviridae, and four new families in Caudoviricetes for these seven novel phages. Their potential hosts appeared to be from the dominant bacterial phyla in Dishui Lake. Altogether, our study provides initial insights into the composition and diversity of bacteriophage communities in Dishui Lake, contributing valuable knowledge to the ongoing research on the roles played by viruses in freshwater ecosystems.
Assuntos
Bacteriófagos , Vírus , Bacteriófagos/genética , Lagos/microbiologia , Ecossistema , China , Genômica , Vírus/genética , Filogenia , Genoma ViralRESUMO
Oysters are recognized as important vectors for human norovirus transmission in the environment. Whether norovirus binds to bacteria in oyster digestive tissues (ODTs) remains unknown. To shed light on this concern, ODT-54 and ODT-32, positive for histo-blood group antigen (HBGA) -like substances, were isolated from ODTs and identified as Pseudomonas composti and Enterobacter cloacae, respectively. The binding of noroviruses (GII.4 and GII.6 P domains) to bacterial cells (ODT-32 and ODT-54; in situ assay) as well as extracted extracellular polysaccharides (EPSs; in vitro assay) was analyzed by flow cytometry, confocal laser scanning microscopy, ELISA, and gene knock-out mutants. ODT-32 bound to neither GII.4 nor GII.6 P domains, while ODT-54 specifically binds with GII.6 P domain through Psl, an exopolysaccharide encoded by the polysaccharide synthesis locus (psl), identified based on gene annotation, gene transcription, Psl specific staining, and ELISAs. These findings attest that ODT bacteria specifically bind with certain norovirus genotypes in a strain-dependent manner, contributing to a better understanding of the transmission and enrichment of noroviruses in the environment.
RESUMO
Virophages are a group of small double-stranded DNA viruses that replicate and proliferate with the help of the viral factory of large host viruses. They are widely distributed in aquatic environments but are more abundant in freshwater ecosystems. Here, we mined the Global Ocean Viromes 2.0 (GOV 2.0) dataset for the diversity, distribution, and association of virophages and their potential host large viruses in marine environments. We identified 94 virophage sequences (>5 kbp in length), of which eight were complete genomes. The MCP phylogenetic tree showed that the GOV virophages were widely distributed on the global virophage tree but relatively clustered on three major branches. The gene-sharing network divided GOV virophages into 21 outliers, 2 overlaps, and 14 viral clusters, of which 4 consisted of only the GOV virophages. We also identified 45 large virus sequences, 8 of which were >100 kbp in length and possibly involved in cell-virus-virophage (C-V-v) trisome relationships. The potential eukaryotic hosts of these eight large viruses and the eight virophages with their complete genomes identified are likely to be algae, based on comparative genomic analysis. Both homologous gene and codon usage analyses support a possible interaction between a virophage (GOVv18) and a large algal virus (GOVLV1). These results indicate that diverse and novel virophages and large viruses are widespread in global marine environments, suggesting their important roles and the presence of complicated unknown C-V-v relationships in marine ecosystems.
Assuntos
Phycodnaviridae , Virófagos , Phycodnaviridae/genética , Filogenia , Ecossistema , Viroma , Genoma Viral , Oceanos e MaresRESUMO
Background: Immune checkpoint inhibitors (ICIs) have become a standard care in non-small-cell lung cancer (NSCLC). However, its application to epidermal growth factor receptor (EGFR)-mutant NSCLC patients is confronted with drug resistance. This study aimed to clarify the potential role of Yes1-associated transcriptional regulator (YAP1) in ICIs treatment for EGFR-mutant NSCLC population. Methods: All the clinical data of NSCLC were downloaded from Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) for GSE11969 and GSE72094. Based on YAP1 expression, all the NSCLC patients including the EGFR-mutant and EGFR-wildtype (WT) patients were divided into two groups, YAP1_High and YAP1_Low. Using cBioPortal, genetic alterations were analyzed for identification of immunogenicity in EGFR-mutant NSCLC. MR analysis was used to analyze the hub gene of EGFR. The infiltration of immune cells and the expression of the identified tumor-associated antigens were identified with TIMER. By graph learning-based dimensionality reduction analysis, the immune landscape was visualized. Moreover, survival analysis was performed to verify the predictive value of YAP1 in ICIs treatment for EGFR-mutant NSCLC population using Ren's research data (NCT03513666). Results: YAP1 was a poor prognostic factor of EGFR-mutant NSCLC population rather than lung adenocarcinoma (LUAD) patients. MR analysis revealed that the EGFR gene regulated YAP1 expression. YAP1 was identified as a hub gene closely associated with immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population in TCGA LUAD. Tumors with YAP1_High showed an immune-"cold" and immunosuppressive phenotype, whereas those with YAP1_Low demonstrated an immune-"hot" and immunoactive phenotype. More importantly, it was verified that YAP1_High subpopulation had a significantly shorter progression-free survival (PFS) and overall survival (OS) after ICIs treatment in EGFR-mutant NSCLC patients in the clinical trial. Conclusions: YAP1 mediates immunosuppressive microenvironment and poor prognosis in EGFR-mutant NSCLC population. YAP1 is a novel negative biomarker of ICIs treatment in EGFR-mutant NSCLC population. Clinical Trials. This trial is registered with NCT03513666.
Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Genes erbB-1 , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB/genética , Biomarcadores , Imunossupressores , Microambiente TumoralRESUMO
OBJECTIVE: To retrospectively analyze the clinical efficacy of olecranon osteotomy approach in the treatment of Dubberley type â ¢ coronal fractures of the distal humerus and summarize the treatment experience. METHODS: From January 2016 to June 2020, 17 patients (5 males and 12 females) with Dubberley type â ¢ coronal fractures of the distal humerus were treated by olecranon osteotomy approach. The age ranged from 37 to78 years old with an average of (58.5±12.9) years old. According to Dubberley classification, there were 5 cases of type â ¢ A and 12 cases of type â ¢ B. The curative effect was evaluated using the Borberg-Morrey elbow function score. The flexion, extension and rotation range of motion of the elbow joint, complications and postoperative imaging evaluation were recorded. RESULTS: All the 17 patients got bony union. The follow-up time ranged from 12 to 33 months with an average of (15.6±5.6) months. There was 1 case of ischemic necrosis of capitulum humeri, 2 cases of traumatic arthritis and 1 case of heterotopic ossification, 1 case of malunion of fracture. The range of motion was (114.80±19.50) °. The Broberg-Morrey score was 85.3±8.2, excellent in 5 cases, good in 9 cases, fair in 3 cases and poor in 0 case. CONCLUSION: Through olecranon osteotomy approach, the articular surface of distal humerus could be fully exposed, and the operation is convenient. Anatomical reduction and rigid fixation of the articular surface of distal humerus are the key factors for the succesful outcome.
Assuntos
Articulação do Cotovelo , Fraturas do Úmero , Olécrano , Masculino , Feminino , Humanos , Adulto , Olécrano/cirurgia , Articulação do Cotovelo/cirurgia , Fraturas do Úmero/cirurgia , Estudos Retrospectivos , Fixação Interna de Fraturas/métodos , Úmero/cirurgia , Resultado do Tratamento , Amplitude de Movimento ArticularRESUMO
The intron-based stabilization approach is a very useful strategy for construction of stable flavivirus infectious clones. SA14-14-2 is a highly attenuated Japanese encephalitis (JE) live vaccine strain that has been widely used in China since 1989. To develop safe and effective recombinant vaccines with SA14-14-2 as a backbone vector, we constructed the DNA-based infectious clone pCMW-JEV of SA14-14-2 using the intron-based stabilization approach and acquired the rescued virus rDJEV, which retained the biological properties of the parental virus. Unexpectedly, a rescued virus strain with altered virulence, designated rHV-DJEV, was accidentally acquired in one of the transfection experiments. rHV-DJEV showed up to 105-fold increased neurovirulence compared with the SA14-14-2 parental strain. Genome sequencing showed that the inserted introns were still present in the genome of rHV-DJEV. Therefore, we think that the intron-based stabilization approach should be used with caution in vaccine development and direct iDNA immunization.
Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vacinas contra Encefalite Japonesa , Humanos , Sequência de Bases , Vírus da Encefalite Japonesa (Espécie)/genética , Encefalite Japonesa/prevenção & controle , Genoma Viral , Íntrons , Vacinas contra Encefalite Japonesa/genética , Vacinas Atenuadas/genéticaRESUMO
3D-QSAR models were established by collecting 46 multivariate-substituted 4-oxyquinazoline HDAC6 inhibitors. The relationship of molecular structure and inhibitory activity was studied by comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA). The results showed the models established by CoMFA (q2 = 0.590, r2 = 0.965) and CoMSIA (q2 = 0.594, r2 = 0.931) had good prediction ability. At the same time, 3D-QSAR models met the internal verification, external verification and AD test. Ten new compounds were designed based on CoMFA and CoMSIA contour maps and their pharmacokinetic/toxic properties (ADME/T) were evaluated. It was found that most compounds have well safety profile and pharmacokinetic property. Then, we explored the interaction between HDAC6 and compounds by molecular docking. The results showed that the binding mode of the new compounds with HDAC6 was the same as the template compound 46, and the hydrogen bond and hydrophobic bond played a vital role in the binding process. Molecular dynamics simulation results showed that residues Ser531, His574 and Tyr745 played key roles in the binding process. All newly designed compounds had lower energy gap and binding energy than compound 46 according to DFT analysis and free energy analysis. This study provided a theoretical reference for designing compounds of higher activity and a new idea for the development of novel HDAC6 inhibitors.
Assuntos
Simulação de Dinâmica Molecular , Relação Quantitativa Estrutura-Atividade , Simulação de Acoplamento Molecular , Estrutura MolecularRESUMO
Erlotinib is a first-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI). Overcoming erlotinib resistance is crucial to improve the survival of advanced non-small cell lung cancer (NSCLC) patients with sensitive EGFR mutations. It is also an important clinical problem that urgently needs a solution. In this study, we explored strategies to overcome erlotinib resistance from the perspective of energy metabolism. SIRT6 is a histone deacetylase. Here, we found that high expression of SIRT6 is associated with poor prognosis of lung adenocarcinoma, especially in EGFR-mutated NSCLC patients. The next cell experiment found that SIRT6 expression increased in erlotinib-resistant cells, and SIRT6 expression was negatively correlated with the sensitivity of NSCLC to erlotinib. Inhibition of SIRT6 promoted erlotinib-induced apoptosis in erlotinib-resistant cells, and glycolysis in drug-resistant cells was also inhibited. Functional studies have shown that SIRT6 increases glycolysis through the HIF-1α/HK2 signaling axis in drug-resistant cells and inhibits the sensitivity of NSCLC cells to erlotinib. In addition, the HIF-1α blocker PX478-2HCL attenuated the glycolysis and erlotinib resistance induced by SIRT6. More importantly, we confirmed the antitumor effect of SIRT6 inhibition combined with erlotinib in NSCLC-bearing mice. Our findings indicate that the cancer metabolic pathway regulated by SIRT6 may be a new target for attenuating NSCLC erlotinib resistance and has potential as a biomarker or therapeutic target to improve outcomes in NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Sirtuínas , Animais , Camundongos , Apoptose , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/farmacologia , Cloridrato de Erlotinib/uso terapêutico , Glicólise/genética , Histona Desacetilases/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutação , Inibidores de Proteínas Quinases/farmacologia , Sirtuínas/genética , Sirtuínas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto , HumanosRESUMO
We have obtained an attenuated rabies virus CTN181-3. In this paper, we make a comprehensive studies on CTN181-3. CTN181-3 showed no pathogenicity by i. c. or o. i. inoculation in 3-week-old mice, lower pathogenic in 2-week-old mice, and no virulence by o. i. inoculation in 8-week-old golden hamsters. CTN181-3 showed high immunogenicity, which produced high level neutralizing antibodies, 100% sero-conversation and >5.0 IU/ml GMT by one dose i. m. or o. i. vaccination in mice and golden hamsters. Cellular immune response by one dose i. m. or o. i. inoculation was detected. Especially in PEP, reduced dose of vaccination resulted in 50% (one dose) and 100% (2 doses) protections in golden hamsters. Molecular basis of the attenuation indicated that eight substitutions compared to its parental virus strain CTN-1, among them the two substitutions at the G276 (LeuâVal) and L1496 (MetâTrp) were the critical attenuated site. The phenotypic and genotypic characteristics of CTN181-3 were highly stable, no reversion was occurred when the virus was multiple passaged in suckling mice brains, guinea pig submandibular glands or BSR/Vero cell cultures. The gene homology compared to the Chinese rabies isolates showed much higher than rabies vaccine strains used in China, suggesting CTN181-3 is a promising and suitable oral rabies vaccine candidate strain.