Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35135874

RESUMO

Bacteria use surface appendages called type IV pili to perform diverse activities including DNA uptake, twitching motility, and attachment to surfaces. The dynamic extension and retraction of pili are often required for these activities, but the stimuli that regulate these dynamics remain poorly characterized. To address this question, we study the bacterial pathogen Vibrio cholerae, which uses mannose-sensitive hemagglutinin (MSHA) pili to attach to surfaces in aquatic environments as the first step in biofilm formation. Here, we use a combination of genetic and cell biological approaches to describe a regulatory pathway that allows V. cholerae to rapidly abort biofilm formation. Specifically, we show that V. cholerae cells retract MSHA pili and detach from a surface in a diffusion-limited, enclosed environment. This response is dependent on the phosphodiesterase CdpA, which decreases intracellular levels of cyclic-di-GMP to induce MSHA pilus retraction. CdpA contains a putative nitric oxide (NO)-sensing NosP domain, and we demonstrate that NO is necessary and sufficient to stimulate CdpA-dependent detachment. Thus, we hypothesize that the endogenous production of NO (or an NO-like molecule) in V. cholerae stimulates the retraction of MSHA pili. These results extend our understanding of how environmental cues can be integrated into the complex regulatory pathways that control pilus dynamic activity and attachment in bacterial species.


Assuntos
Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/fisiologia , Óxido Nítrico/farmacologia , Vibrio cholerae/efeitos dos fármacos , Vibrio cholerae/metabolismo , Aderência Bacteriana/efeitos dos fármacos , Aderência Bacteriana/fisiologia , Proteínas de Fímbrias/genética , Regulação Bacteriana da Expressão Gênica , Vibrio cholerae/genética
2.
J Bacteriol ; 203(18): e0024921, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34181483

RESUMO

During growth, bacteria increase in size and divide. Division is initiated by the formation of the Z-ring, a ring-like cytoskeletal structure formed by treadmilling protofilaments of the tubulin homolog FtsZ. FtsZ localization is thought to be controlled by the Min and Noc systems, and here we explore why cell division fails at high temperature when the Min and Noc systems are simultaneously mutated. Microfluidic analysis of a minD noc double mutant indicated that FtsZ formed proto-Z-rings at periodic interchromosome locations but that the rings failed to mature and become functional. Extragenic suppressor analysis indicated that a variety of mutations restored high temperature growth to the minD noc double mutant, and while many were likely pleiotropic, others implicated the proteolysis of the transcription factor Spx. Further analysis indicated that a Spx-dependent pathway activated the expression of ZapA, a protein that primarily compensates for the absence of Noc. In addition, an Spx-independent pathway reduced the length of the cytokinetic period, perhaps by increasing divisome activity. Finally, we provide evidence of an as-yet-unidentified protein that is activated by Spx and governs the frequency of polar division and minicell formation. IMPORTANCE Bacteria must properly position the location of the cell division machinery in order to grow, divide, and ensure each daughter cell receives one copy of the chromosome. In Bacillus subtilis, cell division site selection depends on the Min and Noc systems, and while neither is individually essential, cells fail to grow at high temperature when both are mutated. Here, we show that cell division fails in the absence of Min and Noc, due not to a defect in FtsZ localization but rather to a failure in the maturation of the cell division machinery. Suppressor mutations that restored growth were selected, and while some activated the expression of ZapA via the Spx stress response pathway, others appeared to directly enhance divisome activity.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Divisão Celular/genética , Mutação , Proteínas de Fluorescência Verde
3.
Braz J Med Biol Res ; 54(9): e10842, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34076142

RESUMO

Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.


Assuntos
Proteínas da Mielina , Receptores de Superfície Celular , Animais , Proteínas Ligadas por GPI , Regeneração Nervosa , Proteínas Nogo , Ratos , Ratos Sprague-Dawley , Nervo Isquiático
4.
mBio ; 12(1)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33531398

RESUMO

Bacteria that divide by binary fission form FtsZ rings at the geometric midpoint of the cell between the bulk of the replicated nucleoids. In Bacillus subtilis, the DNA- and membrane-binding Noc protein is thought to participate in nucleoid occlusion by preventing FtsZ rings from forming over the chromosome. To explore the role of Noc, we used time-lapse fluorescence microscopy to monitor FtsZ and the nucleoid of cells growing in microfluidic channels. Our data show that Noc does not prevent de novo FtsZ ring formation over the chromosome nor does Noc control cell division site selection. Instead, Noc corrals FtsZ at the cytokinetic ring and reduces migration of protofilaments over the chromosome to the future site of cell division. Moreover, we show that FtsZ protofilaments travel due to a local reduction in ZapA association, and the diffuse FtsZ rings observed in the Noc mutant can be suppressed by ZapA overexpression. Thus, Noc sterically hinders FtsZ migration away from the Z-ring during cytokinesis and retains FtsZ at the postdivisional polar site for full disassembly by the Min system.IMPORTANCE In bacteria, a condensed structure of FtsZ (Z-ring) recruits cell division machinery at the midcell, and Z-ring formation is discouraged over the chromosome by a poorly understood phenomenon called nucleoid occlusion. In B. subtilis, nucleoid occlusion has been reported to be mediated, at least in part, by the DNA-membrane bridging protein, Noc. Using time-lapse fluorescence microscopy of cells growing in microchannels, we show that Noc neither protects the chromosome from proximal Z-ring formation nor determines the future site of cell division. Rather, Noc plays a corralling role by preventing protofilaments from leaving a Z-ring undergoing cytokinesis and traveling over the nucleoid.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/fisiologia , Citocinese/fisiologia , Proteínas do Citoesqueleto/fisiologia , Bacillus subtilis/citologia , Bacillus subtilis/genética , Cromossomos Bacterianos , Técnicas Analíticas Microfluídicas
5.
Braz. j. med. biol. res ; 54(9): e10842, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1249339

RESUMO

Regeneration of injured peripheral nerves is an extremely complex process. Nogo-A (neurite outgrowth inhibitor-A) inhibits axonal regeneration by interacting with Nogo receptor in the myelin sheath of the central nervous system (CNS). The aim of this study was to investigate the effects of Nogo-A and its receptor on the repair of sciatic nerve injury in rats. Sprague-Dawley rats (n=96) were randomly divided into 4 groups: control group (control), sciatic nerve transection group (model), immediate repair group (immediate repair), and delayed repair group (delayed repair). The rats were euthanized 1 week and 6 weeks after operation. The injured end tissues of the spinal cord and sciatic nerve were obtained. The protein expressions of Nogo-A and Nogo-66 receptor (NgR) were detected by immunohistochemistry. The protein expressions of Nogo-A, NgR, and Ras homolog family member A (RhoA) were detected by western blot. At 1 week after operation, the pathological changes in the immediate repaired group were less, and the protein expressions of Nogo-A, NgR, and RhoA in the spinal cord and sciatic nerve tissues were decreased (P<0.05) compared with the model group. After 6 weeks, the pathological changes in the immediate repair group and the delayed repair group were alleviated and the protein expressions decreased (P<0.05). The situation of the immediate repair group was better than that of the delayed repair group. Our data suggest that the expression of Nogo-A and its receptor increased after sciatic nerve injury, indicating that Nogo-A and its receptor play an inhibitory role in the repair process of sciatic nerve injury in rats.


Assuntos
Animais , Ratos , Receptores de Superfície Celular , Proteínas da Mielina , Nervo Isquiático , Ratos Sprague-Dawley , Proteínas Ligadas por GPI , Proteínas Nogo , Regeneração Nervosa
6.
mBio ; 11(2)2020 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-32184253

RESUMO

A microfluidic system coupled with fluorescence microscopy is a powerful approach for quantitative analysis of bacterial growth. Here, we measure parameters of growth and dynamic localization of the cell division initiation protein FtsZ in Bacillus subtilis Consistent with previous reports, we found that after division, FtsZ rings remain at the cell poles, and polar FtsZ ring disassembly coincides with rapid Z-ring accumulation at the midcell. In cells mutated for minD, however, the polar FtsZ rings persist indefinitely, suggesting that the primary function of the Min system is in Z-ring disassembly. The inability to recycle FtsZ monomers in the minD mutant results in the simultaneous maintenance of multiple Z-rings that are restricted by competition for newly synthesized FtsZ. Although the parameters of FtsZ dynamics change in the minD mutant, the overall cell division time remains the same, albeit with elongated cells necessary to accumulate a critical threshold amount of FtsZ for promoting medial division. Finally, the minD mutant characteristically produces minicells composed of polar peptidoglycan shown to be inert for remodeling in the wild type. Polar peptidoglycan, however, loses its inert character in the minD mutant, suggesting that the Min system not only is important for recycling FtsZ but also may have a secondary role in the spatiotemporal regulation of peptidoglycan remodeling.IMPORTANCE Many bacteria grow and divide by binary fission in which a mother cell divides into two identical daughter cells. To produce two equally sized daughters, the division machinery, guided by FtsZ, must dynamically localize to the midcell each cell cycle. Here, we quantitatively analyzed FtsZ dynamics during growth and found that the Min system of Bacillus subtilis is essential to disassemble FtsZ rings after division. Moreover, a failure to efficiently recycle FtsZ results in an increase in cell size. Finally, we show that the Min system has an additional role in inhibiting cell wall turnover and contributes to the "inert" property of cell walls at the poles.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/genética , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Peptidoglicano/metabolismo , Bacillus subtilis/metabolismo , Divisão Celular , Proteínas de Fluorescência Verde
7.
Per Med ; 16(2): 93-105, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30693815

RESUMO

AIM: To screen the differential genes in NogoA/NTR-related pathways that associate with sciatic nerve injury. RESULTS: There was no difference in the expression of NogoA, NTR and Ntrk2. Differential genes existed in 11 differential pathways that include NogoA, NTR and Ntrk2. Pathways closely related to sciatic nerve injury are MAPK, endophagocytosis, apoptosis, neurotrophin signaling and inflammatory mediators. NTRK1, FASLG, LDLR ADRB1 and HTR2A in model rats were downregulated compared with control rats, IL1R1, CSF1R, BCL2L1 and HRH1 in model rats were upregulated compared with control rats. CONCLUSION: MAPK, endophagocytic, apoptotic, neurotrophic factor and inflammatory mediators of ductal mediators may be involved in the sciatic nerve injury in rats. The differentially expressed genes in these pathways may play important roles in sciatic nerve injury.


Assuntos
Neuralgia/genética , Proteínas Nogo/genética , Receptores de Fator de Crescimento Neural/genética , Animais , Apoptose , Regeneração Nervosa , Traumatismos dos Nervos Periféricos , Ratos , Ratos Sprague-Dawley , Receptor de Fator de Crescimento Neural , Receptor trkB/genética , Células de Schwann , Nervo Isquiático/lesões , Neuropatia Ciática , Transdução de Sinais/genética , Transcriptoma/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA