Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2401118, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38979865

RESUMO

Bacteria, especially drug-resistant strains, can quickly cause wound infections, leading to delayed healing and fatal risk in clinics. With the growing need for alternative antibacterial approaches that rely less on antibiotics or eliminate their use altogether, a novel antibacterial hydrogel named Ovtgel is developed. Ovtgel is formulated by chemically crosslinking thiol-modified ovotransferrin (Ovt), a member of the transferrin family found in egg white, with olefin-modified agarose through thiol-ene click chemistry. Ovt is designed to sequester ferric ions essential for bacterial survival and protect wound tissues from damages caused by the reactive oxygen species (ROS) generated in Fenton reactions. Experimental data have shown that Ovtgel significantly enhances wound healing by inhibiting bacterial growth and shielding tissues from ROS-induced harms. Unlike traditional antibiotics, Ovtgel targets essential trace elements required for bacterial survival in the host environment, preventing the development of drug resistance in pathogenic bacteria. Ovtgel exhibits excellent biocompatibility due to the homology of Ovt to mammalian transferrin. This hydrogel has the potential to serve as an effective antibiotic-free solution for combating bacterial infections.

2.
Biomaterials ; 296: 122072, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36878091

RESUMO

Alcohol intoxication causes serious diseases, whereas current treatments are mostly supportive and unable to convert alcohol into nontoxic products in the digestive tract. To address this issue, an oral intestinal-coating coacervate antidote containing acetic acid bacteria (AAB) and sodium alginate (SA) mixture was constructed. After oral administration, SA reduces absorption of ethanol and promotes the proliferation of AAB, and AAB converts ethanol to acetic acid or carbon dioxide and water by two sequential catalytic reactions in the presence of membrane-bound alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH). In vivo study shows that the bacteria-based coacervate antidote can significantly reduce the blood alcohol concentration (BAC) and effectively alleviates alcoholic liver injury in mice. Given the convenience and effectiveness of oral administration, AAB/SA can be used as a promising candidate antidote for relieving alcohol-induced acute liver injury.


Assuntos
Intoxicação Alcoólica , Antídotos , Camundongos , Animais , Antídotos/farmacologia , Antídotos/uso terapêutico , Concentração Alcoólica no Sangue , Etanol/farmacologia , Fígado , Aldeído Desidrogenase/farmacologia
3.
J Control Release ; 353: 591-610, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503071

RESUMO

Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.


Assuntos
Antibacterianos , Macrófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Interferon gama , Macrófagos/imunologia , Metalocenos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/imunologia , Polímeros/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Nanoestruturas/uso terapêutico
4.
Adv Sci (Weinh) ; 10(4): e2205480, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36479844

RESUMO

Systematic administration of antibiotics to treat infections often leads to the rapid evolution and spread of multidrug-resistant bacteria. Here, an in situ-formed biotherapeutic gel that controls multidrug-resistant bacterial infections and accelerates wound healing is reported. This biotherapeutic gel is constructed by incorporating stable microbial communities (kombucha) capable of producing antimicrobial substances and organic acids into thermosensitive Pluronic F127 (polyethylene-polypropylene glycol) solutions. Furthermore, it is found that the stable microbial communities-based biotherapeutic gel possesses a broad antimicrobial spectrum and strong antibacterial effects in diverse pathogenic bacteria-derived xenograft infection models, as well as in patient-derived multidrug-resistant bacterial xenograft infection models. The biotherapeutic gel system considerably outperforms the commercial broad-spectrum antibacterial gel (0.1% polyaminopropyl biguanide) in pathogen removal and infected wound healing. Collectively, this biotherapeutic strategy of exploiting stable symbiotic consortiums to repel pathogens provides a paradigm for developing efficient antibacterial biomaterials and overcomes the failure of antibiotics to treat multidrug-resistant bacterial infections.


Assuntos
Anti-Infecciosos , Infecções Bacterianas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias , Poloxaleno/farmacologia , Infecções Bacterianas/tratamento farmacológico
5.
Biomaterials ; 281: 121358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979416

RESUMO

The overexpression of glutathione (GSH) in cancer cells has long been regarded as the primary obstacle for reactive oxygen species (ROS)-involved anti-tumor therapies. To solve this issue, a ferric ion and selenite-codoped calcium phosphate (Fe/Se-CaP) nanohybrid here is fabricated to catabolize endogenous GSH, instead of directly deleting it, to trigger a ROS storm for tumor suppression. The selenite component in Fe/Se-CaP can catabolize GSH to superoxide anion (O2•-) and hydroxyl radicals (•OH) via cascade catalytic reactions, elevating oxidative stress while destroying antioxidant system. The doped Fe can further catalyze the soaring hydrogen peroxide (H2O2) originated from O2•- to •OH via Fenton reactions. Collectively, Fe/Se-CaP mediated self-augmented catabolism dynamic therapy finally induces apoptosis of cancer cells owing to the significant rise of ROS and, combined with CaP adjuvant, evokes adaptive immune responses to suppress tumor progression, providing an innovative train of thought for ROS-involved anti-tumor therapies.


Assuntos
Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro , Espécies Reativas de Oxigênio/metabolismo , Ácido Selenioso , Superóxidos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA