Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
PLoS One ; 19(5): e0302865, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38723016

RESUMO

Influenza A viruses (IAVs) continue to pose a huge threat to public health, and their prevention and treatment remain major international issues. Neuraminidase (NA) is the second most abundant surface glycoprotein on influenza viruses, and antibodies to NA have been shown to be effective against influenza infection. In this study, we generated a monoclonal antibody (mAb), named FNA1, directed toward N1 NAs. FNA1 reacted with H1N1 and H5N1 NA, but failed to react with the NA proteins of H3N2 and H7N9. In vitro, FNA1 displayed potent antiviral activity that mediated both NA inhibition (NI) and blocking of pseudovirus release. Moreover, residues 219, 254, 358, and 388 in the NA protein were critical for FNA1 binding to H1N1 NA. However, further validation is necessary to confirm whether FNA1 mAb is indeed a good inhibitor against NA for application against H1N1 and H5N1 viruses.


Assuntos
Anticorpos Monoclonais , Vírus da Influenza A Subtipo H1N1 , Neuraminidase , Neuraminidase/imunologia , Neuraminidase/metabolismo , Neuraminidase/antagonistas & inibidores , Anticorpos Monoclonais/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Humanos , Animais , Anticorpos Antivirais/imunologia , Camundongos , Virus da Influenza A Subtipo H5N1/imunologia , Camundongos Endogâmicos BALB C , Antivirais/farmacologia , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Vírus da Influenza A Subtipo H3N2/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia
2.
Radiat Res ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38679421

RESUMO

We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 µg/kg rhTPO treatment group. All animals received total-body irradiation using 60Co γ-ray source at a dose of 3.0 Gy (dose rate was 69.1 cGy/min). The treatment group received intramuscular injection of rhTPO 5 and 10 µg/kg at 2 h postirradiation, and the control group was administrated the same volume of normal saline. The survival rate, clinical signs, peripheral hemogram, serum biochemistry, and histopathological examination of animals in each group were assessed. Single administration of 10 µg/kg rhTPO at 2 h postirradiation promoted the recovery of multilineage hematopoiesis and improved the survival rate of beagles irradiated with 3 Gy 60Co γ rays. The administration of 10 µg/kg rhTPO alleviated fever and bleeding, reduced the requirement for supportive care, and may have mitigated multiple organ damage.

3.
Molecules ; 29(4)2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38398568

RESUMO

Ionizing radiation (IR)-induced hematopoietic injury has become a global concern in the past decade. The underlying cause of this condition is a compromised hematopoietic reserve, and this kind of hematopoietic injury could result in infection or bleeding, in addition to lethal mishaps. Therefore, developing an effective treatment for this condition is imperative. Fluacrypyrim (FAPM) is a recognized effective inhibitor of STAT3, which exhibits anti-inflammation and anti-tumor effects in hematopoietic disorders. In this context, the present study aimed to determine whether FAPM could serve as a curative agent in hematopoietic-acute radiation syndrome (H-ARS) after total body irradiation (TBI). The results revealed that the peritoneally injection of FAPM could effectively promote mice survival after lethal dose irradiation. In addition, promising recovery of peripheral blood, bone marrow (BM) cell counts, hematopoietic stem cell (HSC) cellularity, BM colony-forming ability, and HSC reconstituting ability upon FAPM treatment after sublethal dose irradiation was noted. Furthermore, FAPM could reduce IR-induced apoptosis in hematopoietic stem and progenitor cells (HSPCs) both in vitro and in vivo. Specifically, FAPM could downregulate the expressions of p53-PUMA pathway target genes, such as Puma, Bax, and Noxa. These results suggested that FAPM played a protective role in IR-induced hematopoietic damage and that the possible underlying mechanism was the modulation of apoptotic activities in HSCs.


Assuntos
Proteínas Reguladoras de Apoptose , Células-Tronco Hematopoéticas , Pirimidinas , Camundongos , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Acrilatos/farmacologia , Apoptose , Irradiação Corporal Total , Camundongos Endogâmicos C57BL
4.
Nat Commun ; 14(1): 6912, 2023 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-37903783

RESUMO

Radiation triage and biological dosimetry are critical for the medical management of massive potentially exposed individuals following radiological accidents. Here, we performed a genome-wide screening of radiation-responding mRNAs, whose N6-methyladenosine (m6A) levels showed significant alteration after acute irradiation. The m6A levels of three genes, Ncoa4, Ate1 and Fgf22, in peripheral blood mononuclear cells (PBMCs) of mice showed excellent dose-response relationships and could serve as biomarkers of radiation exposure. Especially, the RNA m6A of Ncoa4 maintained a high level as long as 28 days after irradiation. We demonstrated its responsive specificity to radiation, conservation across the mice, monkeys and humans, and the dose-response relationship in PBMCs from cancer patients receiving radiation therapy. Finally, NOCA4 m6A-based biodosimetric models were constructed for estimating absorbed radiation doses in mice or humans. Collectively, this study demonstrated the potential feasibility of RNA m6A in radiation accidents management and clinical applications.


Assuntos
Leucócitos Mononucleares , RNA , Humanos , Animais , Camundongos , Relação Dose-Resposta à Radiação , Biomarcadores , Radiação Ionizante
5.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 546-552, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37096532

RESUMO

OBJECTIVE: To investigate the effect and relative mechanism of Recombinant Human Thrombopoietin (rhTPO) on long-term hematopoietic recovery in mice with acute radiation sickness. METHODS: Mice were intramuscularly injected with rhTPO (100 µg/kg) 2 hours after total body irradiation with 60Co γ-rays (6.5 Gy). Moreover, six months after irradiation, peripheral blood, hematopoietic stem cells (HSC) ratio, competitive transplantation survival rate and chimerization rate, senescence rate of c-kit+ HSC, and p16 and p38 mRNA expression of c-kit+ HSC were detected. RESULTS: Six months after 6.5 Gy γ-ray irradiation, there were no differences in peripheral blood white blood cells, red blood cells, platelets, neutrophils and bone marrow nucleated cells in normal group, irradiated group and rhTPO group (P>0.05). The proportion of hematopoietic stem cells and multipotent progenitor cells in mice of irradiated group was significantly decreased after irradiation (P<0.05), but there was no significant changes in rhTPO group (P>0.05). The counts of CFU-MK and BFU-E in irradiated group were significantly lower than that in normal group, and rhTPO group was higher than that of the irradiated group(P<0.05). The 70 day survival rate of recipient mice in normal group and rhTPO group was 100%, and all mice died in irradiation group. The senescence positive rates of c-kit+ HSC in normal group, irradiation group and rhTPO group were 6.11%, 9.54% and 6.01%, respectively (P<0.01). Compared with the normal group, the p16 and p38 mRNA expression of c-kit+ HSC in the irradiated mice were significantly increased (P<0.01), and it was markedly decreased after rhTPO administration (P<0.01). CONCLUSION: The hematopoietic function of mice is still decreased 6 months after 6.5 Gy γ-ray irradiation, suggesting that there may be long-term damage. High-dose administration of rhTPO in the treatment of acute radiation sickness can reduce the senescence of HSC through p38-p16 pathway and improve the long-term damage of hematopoietic function in mice with acute radiation sickness.


Assuntos
Lesões por Radiação , Trombopoetina , Animais , Humanos , Camundongos , Plaquetas , Células-Tronco Hematopoéticas , Proteínas Recombinantes/uso terapêutico , RNA Mensageiro/metabolismo , Trombopoetina/uso terapêutico
6.
Biomedicines ; 11(3)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36979928

RESUMO

In this study, we test the therapeutic effects of rapamycin in a murine model of SLE-like experimental lupus nephritis induced by chronic graft-versus-host disease (cGVHD). Our results suggest that rapamycin treatment reduced autoantibody production, inhibited T lymphocyte and subsequent B cell activation, and reduced inflammatory cytokine and chemokine production, thereby protecting renal function and alleviating histological lupus nephritis by reducing the occurrence of albuminuria. To explore the potential mechanism of rapamycin's reduction of kidney damage in mice with lupus nephritis, a series of functional assays were conducted. As expected, rapamycin remarkably inhibited the lymphocytes' proliferation within the morbid mice. Interestingly, significantly increased proportions of peripheral CD4+FOXP3+ and CD4+CD25high T cells were observed in rapamycin-treated group animals, suggesting an up-regulation of regulatory T cells (Tregs) in the periphery by rapamycin treatment. Furthermore, consistent with the results regarding changes in mRNA abundance in kidney by real-time PCR analysis, intracellular cytokine staining demonstrated that rapamycin treatment remarkably diminished the secretion of Th1 and Th2 cytokines, including IFN-γ, IL-4 and IL-10, in splenocytes of the morbid mice. However, the production of IL-2 from splenocytes in rapamycin-treated mice was significantly higher than in the cells from control group animals. These findings suggest that rapamycin treatment might alleviate systemic lupus erythematosus (SLE)-like experimental lupus nephritis through the recovery of IL-2 production, which promotes the expansion of regulatory T cells while inhibiting effector T cell activation. Our studies demonstrated that, unlike other commonly used immunosuppressants, rapamycin does not appear to interfere with tolerance induction but permits the expansion and suppressive function of Tregs in vivo.

7.
Molecules ; 28(4)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36838940

RESUMO

Exposure to medium and high doses of ionizing radiation (IR) can induce long-term bone marrow (BM) suppression. We previously showed that recombinant human thrombopoietin (rhTPO) significantly promotes recovery from hematopoietic-acute radiation syndrome, but its effect on long-term BM suppression remains unknown. C57BL/6 mice were exposed to 6.5 Gy γ-rays of total body irradiation (TBI) at a dose-rate of 63.01 cGy per minute, and the mice were treated with rhTPO (100 µg; intramuscular injection) or vehicle at 2 h after TBI. All mice were killed one or two months after TBI for analysis of peripheral blood cell counts, long-term hematopoietic stem cell (HSC) frequency, and BM-derived clonogenic activity. The HSC self-renewal capacity was analyzed by BM transplantation. The levels of reactive oxygen species (ROS) production and ratios of γH2AX+ and p16, p53, and p21 mRNA in HSCs were measured by flow cytometry and real-time polymerase chain reaction, respectively. Treatment with rhTPO reduced long-term myelosuppression by improving long-term hematopoietic reconstitution (p < 0.05) after transplantation and resting state maintenance of HSCs (p < 0.05). Moreover, rhTPO treatment was associated with a sustained reduction in long-term ROS production, reduction of long-term DNA damage, diminished p53/p21 mRNA expression, and prevention of senescence after TBI. This study suggests rhTPO is an effective agent for treating IR-induced long-term BM injury because it regulates hematopoietic remodeling and HSC cycle disorder through the ROS/p53/p21/p16 pathway long term after IR.


Assuntos
Lesões por Radiação , Trombopoetina , Animais , Camundongos , Células-Tronco Hematopoéticas , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/metabolismo , RNA Mensageiro/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Irradiação Corporal Total
8.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1746-1751, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476898

RESUMO

OBJECTIVE: To investigate the effect of atovaquone on the cell cycle and apoptosis of non-Hodgkin's lymphoma Raji cells, and clarify the related mechanisms. METHODS: MTT assay and trypan blue dye exclusion method were used to evaluate the effect of atovaquone on the proliferation of Raji cells. After the cells were stained by PI staining, the cell cycle distribution was detected by flow cytometry. Cell apoptosis was analyzed by Annexin V/PI double binding assay. The intracellular alterations of reactive oxygen species were detected by 2', 7'-dichlorofluorescein diacetate (DCFH-DA). The protein expression of cell cycle and apoptosis related molecules were detected by Western blot. RESULTS: Various concentrations of atovaquone (5-40 µmol/L) inhibited the growth of Raji cells in a concentration-dependent manner (r=0.951). The proliferation of Raji cells was significantly inhibited after treated by atovaquone (20 and 30 µmol/L) for 24, 48 and 72 h, which showed statistically different with that in the control group (P<0.01, P<0.001, P<0.001). G1 phase arrest (P<0.01, P<0.001) and apoptosis (P<0.01) of Raji cells was induced by atovaquone (20 and 30 µmol/L) significantly for 24 h and 48 h, respectively. The expression of p-JAK2 and p-STAT3(Y705) protein were down-regulated significantly induced by atovaquone (P<0.001, P<0.05). Furthermore, atovaquone treatment could induce the decreasing of antiapoptotic protein Mcl-1, Bcl-2, and Bcl-xl expression level (P<0.05) and increasing of cleaved caspase-3 protein expression level. In addition, atovaquone could also induce the down-regulation of c-Myc (P<0.001, P<0.01) and cell cycle related molecules Cyclin D1, CDK4, and CDK6 (P<0.01, P<0.05) protein expression. CONCLUSION: Atovaquone effectively inhibits cell proliferation and induces cell cycle arrest and apoptosis by suppression of STAT3 signaling pathway in Raji cells. It can be a potential therapeutic agent against non-Hodgkin's lymphoma.


Assuntos
Apoptose , Linfoma não Hodgkin , Humanos , Atovaquona/farmacologia , Pontos de Checagem do Ciclo Celular
9.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(6): 1887-1892, 2022 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-36476921

RESUMO

OBJECTIVE: To confirm the therapeutic effect of recombinant human thrombopoietin (rhTPO) on rhesus monkeys irradiated with 5.0 Gy 60Co γ-ray, and provide experimental basis for clinical treatment of similar patients. METHODS: Fourteen adult rhesus monkeys were irradiated with 60Co γ-ray on both sides at the dose of 5.0 Gy (dose rate 69.2 cGy/min) to establish the acute radiation sickness model. The monkeys were divided into irradiation group (n=5), rhTPO 5 µg/kg group (n=4) and rhTPO 10 µg/kg group (n=5). Two hours after irradiation, the three groups of monkeys were injected with saline 0.1 ml/kg, rhTPO 5 µg/kg(0.1 ml/kg) and rhTPO 10 µg/kg(0.2 ml/kg), respectively. The general signs, survival, peripheral hemogram and serum biochemistry of rhesus monkeys were observed before and after irradiation, and the differences between rhTPO group and irradiation control group were compared. RESULTS: After total body irradiation with 5.0 Gy60Co γ-ray, rhesus monkeys successively showed fever, hemorrhage, sharp decrease of whole blood cell counts in peripheral blood and disorder of serum biochemical indexes. Compared with the irradiated control group, a single intramuscular injection of rhTPO 5 µg/kg or 10 µg/kg 2 hours after irradiation could improve the symptoms of fever and bleeding, increase the nadir of peripheral red blood cells and platelets counts, shorten the duration of hemocytopenia, and advance the time for blood cells to return to the pre-irradiation level. The serum biochemical results showed that rhTPO could improve the abnormality of serum biochemical indexes in rhesus monkeys induced by 5.0 Gy total body irradiation to some extent. Compared with the two administration groups, the therapeutic effect of rhTPO 10 µg/ kg was better. CONCLUSION: A single injection of rhTPO 5 µg/ kg or 10 µg/ kg 2 hours after irradiation can alleviate the injury of multilineage hematopoiesis and promote the recovery in monkeys irradiated by 5.0 Gy γ-ray. It also improves animal signs and has obvious therapeutic effect on acute radiation sickness.


Assuntos
Lesões por Radiação , Humanos , Animais , Macaca mulatta
10.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 30(4): 1255-1261, 2022 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-35981394

RESUMO

OBJECTIVE: To study the effect of interleukin-6 (IL-6) gene deletion on radiation-induced hematopoietic injury in mice and relative mechanism. METHODS: Before and after whole body 60Co γ-ray irradiation, it was analyzed and compared that the difference of peripheral hemogram, bone marrow hematopoietic stem and progenitor cells conts in IL-6 gene knockout (IL-6-/-) and wild-type (IL-6+/+) mice and serum IL-6 and G-CSF expression levels in above- mentioned mouse were detected. Moreover, 30 days survival rate of IL-6-/- and IL-6+/+ mice after 8.0 Gy γ-ray irradiation were analyzed. RESULTS: IL-6 levels in serum of IL-6+/+ and IL-6-/- mice were respectively (98.95±3.85) pg/ml and (18.36±5.61) pg/ml, which showed a significant statistical differences (P<0.001). There were no significant differences of peripheral blood cell counts and G-CSF level in serum between IL-6+/+ and IL-6-/- mice before irradiation (P>0.05). However, the number of leukocytes, neutrophils, lymphocytes, monocytes, platelets in peripheral blood and G-CSF level in serum of IL-6-/- mice were significantly decreased at 6 h after 8.0 Gy γ-ray irradiation compared with that of IL-6+/+ mice. On days 30 after 8.0 Gy γ-ray irradiation, the survival rate of IL-6+/+ and IL-6-/- mice was 62.5% and 12.5%, and the mean survival time of dead mice was 16.0±1.0 and 10.6±5.3 days, respectively. On days 14 after 6.5 Gy γ-ray irradiation, bone marrow nucleated cells in IL-6+/+ and IL-6-/- mice were respectively (10.0±1.2)×106 and (8.3±2.2)×106 per femur. Compared with IL-6+/+ mice, the proportion of Lin-Sca-1-c-kit+ (LK) in bone marrow of IL-6-/- mice had no significant change (P>0.05), but the proportion of Lin-Sca-1+c-kit+ (LSK) was significantly decreased (P<0.05). CONCLUSION: IL-6 plays an obvious role in regulating hematopoietic radiation injury, and IL-6 deficiency can inhibit the radiation-induced increase of endogenous G-CSF level in serum, aggravates the damage of mouse hematopoietic stem cells(HSC) and the reduction of mature blood cells in peripheral blood caused by ionizing irradiation, resulting in the shortening of the survival time and significant decrease of the survival rate of mice exposed to lethal dose radiation.


Assuntos
Interleucina-6/metabolismo , Lesões por Radiação , Animais , Deleção de Genes , Fator Estimulador de Colônias de Granulócitos/farmacologia , Camundongos , Irradiação Corporal Total
11.
Leuk Lymphoma ; 63(5): 1202-1210, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34877904

RESUMO

All-trans retinoic acid-based differentiation therapies have succeeded in the treatment of acute promyelocytic leukemia, which is a rare subtype of acute myeloid leukemia (AML). Their clinical efficacy is negligible, however, for other subtypes of AML. Here, we showed that strobilurin derivatives, a well-established class of inhibitors of mitochondrial electron transport chain (ETC) complex III, possessed differentiation-inducing activity in AML cells. Impairment of mitochondrial ETC activity was involved in the differentiation effects of strobilurin derivatives, where reactive oxygen species generation appeared unnecessary. Conversely, strobilurin derivative-mediated differentiation was triggered by pyrimidine deficiency, which resulted from the inhibition of the mitochondrial-coupled dihydroorotate dehydrogenase enzyme. Moreover, strobilurin derivative-mediated pyrimidine depletion led to the activation of the Akt/mTOR cascade, which was required for the differentiation. Our study provided evidence that strobilurin derivatives may represent a novel class of differentiation-inducing agents for the treatment of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Diferenciação Celular , Inibidores Enzimáticos/farmacologia , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Estrobilurinas/farmacologia , Estrobilurinas/uso terapêutico , Tretinoína/farmacologia
12.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 29(5): 1369-1374, 2021 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-34627412

RESUMO

OBJECTIVE: To establish a leukemia mouse model induced by transplantation of hematopoietic cells from mixed lineage leukemia (MLL)-AF9 transgenic mice so as to provide the basis for the mechanism research and drug screening of acute myeloid leukemia (AML). METHODS: MLL-AF9 knock-in mice were bred and identified. When the mice developed leukemia, white blood cell (WBC) count in peripheral blood, flow cytometry and morphology method were analyzed to identify the disease. When the WBC count in peripheral blood was more than 100×109/L, bone marrow cells and spleen cells were collected and cryopresevated. After resuscitation, the cells were injected into 4.5 Gy irradiated wild C57BL/6J mice through the tail vein to develop MLL-AF9 leukemia mouse model. Finally, the therapeutic effect was evaluated by positive drug on the model. RESULTS: The natural onset times of leukemia on MLL-AF9 knock-in mice were 22-28 weeks. The spleens of the transgenic mice enlarged and the bone marrow showed the immature forms of myeloid leukemia cells. Both the bone marrow and spleen cells highly expressed myeloid markers, CD11b and Gr-1. At least 0.5×106 bone marrow cells and 2.5×106 spleen cells could induce leukemia in all recipient mice, and the median survival times of mice were 20 days and 36 days, respectively. Experimental treatment was carried out on the leukemia mouse model transplanted with MLL-AF9 spleen cells, and it was found that the traditional chemotherapy drug cytarabine could delay the onset of leukemia and prolong the survival time of the mouse model. CONCLUSION: The leukemia model of hematopoietic cell transplantation based on MLL-AF9 transgenic mice is successfully established, which can be used for the study of the pathogenesis and evaluation of therapeutic effect of AML.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas de Fusão Oncogênica
13.
Int J Hematol ; 113(2): 254-262, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33074481

RESUMO

Differentiation therapies with all-trans retinoic acid (ATRA) have been successful in treating acute promyelocytic leukemia, a rare subtype of acute myeloid leukemia (AML). However, their efficacy is limited in the case of other AML subtypes. Here, we show that the combination of ATRA with salt-inducible kinase (SIK) inhibition significantly enhances ATRA-mediated AML differentiation. SIK inhibition augmented the ability of ATRA to induce growth inhibition and G1 cell cycle arrest of AML cells. Moreover, combining ATRA and SIK inhibition synergistically activated the Akt signaling pathway but not the MAPK pathway. Pharmacological blockade of Akt activity suppressed the combination-induced differentiation, indicating an essential role for Akt in the action of the combination treatment. Taken together, our study reveals a novel role for SIK in the regulation of ATRA-mediated AML differentiation, implicating the combination of ATRA and SIK inhibition as a promising approach for future differentiation therapy.


Assuntos
Antineoplásicos/farmacologia , Diferenciação Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Leucemia Mieloide Aguda/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Tretinoína/farmacologia , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Biomarcadores , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Imuno-Histoquímica , Imunofenotipagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Sistema de Sinalização das MAP Quinases , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Tretinoína/uso terapêutico
14.
Int J Radiat Oncol Biol Phys ; 108(5): 1357-1367, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32758640

RESUMO

PURPOSE: Recombinant human thrombopoietin (rhTPO) has been evaluated as a therapeutic intervention for radiation-induced myelosuppression. However, the immunogenicity induced by a repeated-dosing strategy raises concerns about the therapeutic use of rhTPO. In this study, single-dose administration of rhTPO was evaluated for efficacy in the hematopoietic response and survival effect on mice and nonhuman primates exposed to total body irradiation (TBI). METHODS AND MATERIALS: Survival of lethally (9.0 Gy) irradiated C57BL/6J male mice was observed for 30 days after irradiation. Hematologic evaluations were performed on C57BL/6J male mice given a sublethal dose of radiation (6.5 Gy). Furthermore, in sublethally irradiated mice, we performed bone marrow (BM) histologic evaluation and evaluated BM-derived clonogenic activity. Next, the proportion and number of hematopoietic stem cells (HSCs) were analyzed. Competitive repopulation experiments were conducted to assess the multilineage engraftment of irradiated HSCs after BM transplantation. Flow cytometry was used to evaluate DNA damage, cell apoptosis, and cell cycle stage in HSCs after irradiation. Finally, we evaluated the efficacy of a single dose of rhTPO administered after 7 Gy TBI in male and female rhesus monkeys. RESULTS: A single administration of rhTPO 2 hours after irradiation significantly mitigated TBI-induced death in mice. rhTPO promoted multilineage hematopoietic recovery, increasing peripheral blood cell counts, BM cellularity, and BM colony-forming ability. rhTPO administration led to an accelerated recovery of BM HSC frequency and multilineage engraftment after transplantation. rhTPO treatment reduced radiation-induced DNA damage and apoptosis and promoted HSC proliferation after TBI. Notably, a single administration of rhTPO significantly promoted multilineage hematopoietic recovery and improved survival in nonhuman primates after TBI. CONCLUSIONS: These findings indicate that early intervention with a single administration of rhTPO may represent a promising and effective radiomitigative strategy for victims of radiation disasters.


Assuntos
Medula Óssea/efeitos da radiação , Lesões Experimentais por Radiação/prevenção & controle , Trombopoetina/administração & dosagem , Irradiação Corporal Total/efeitos adversos , Animais , Apoptose , Contagem de Células Sanguíneas , Medula Óssea/efeitos dos fármacos , Medula Óssea/lesões , Medula Óssea/patologia , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/efeitos da radiação , Ciclo Celular , Dano ao DNA/efeitos dos fármacos , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos da radiação , Sistema Hematopoético/efeitos dos fármacos , Sistema Hematopoético/lesões , Sistema Hematopoético/patologia , Sistema Hematopoético/efeitos da radiação , Humanos , Macaca mulatta , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/administração & dosagem , Fatores de Tempo
15.
Free Radic Biol Med ; 153: 1-11, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222468

RESUMO

In mass casualty events involving radiation exposure, there is a substantial unmet need for identifying and developing an orally bioavailable agent that can be used to protect the hematopoietic stem cell pool and regenerate hematopoiesis after radiation injury. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study investigates the radioprotective effects of DMSO on oral administration. Single dose of oral DMSO administrated before irradiation conferred 100% survival of C57BL6/J mice receiving otherwise lethal as well as super-lethal radiation dose, with wide radioprotective time frame (from 15min to 4h). Oral DMSO not only protected radiation-induced acute hematopoietic stem and progenitor cell (HSPC) injury, but also ameliorated long-term BM suppression following irradiation in mice. Mechanistically, DMSO directly protected HSPC survival after irradiation in vitro and in vivo, whereas no radioprotective effect was seen in MLL-AF9-induced leukemia cells. Unexpectedly, DMSO treatment did not inhibit radiation-induced HSPC apoptosis, and the HSPC survival from Trp53-and PUMA-deficient mice after irradiation was also protected by DMSO. In conclusion, our findings demonstrate the radioprotective efficacy of oral DMSO. Given its oral efficacy and little toxicity, DMSO is an attractive candidate for human use in a wide variety of settings, including nuclear accidents and medical radiation.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Protetores contra Radiação , Animais , Apoptose , Dimetil Sulfóxido/farmacologia , Células-Tronco Hematopoéticas , Camundongos , Protetores contra Radiação/farmacologia
16.
Int J Radiat Oncol Biol Phys ; 103(1): 217-228, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30103023

RESUMO

PURPOSE: The risk of radiation exposure is considered to have increased in recent years. For convenience and simple administration, development of an effective orally administered radioprotective agent is highly desirable. The steroid 5-androstene-3ß, 17ß-diol (5-AED) has been evaluated as both a radioprotector and a radiomitigator in mice and nonhuman primates; however, poor oral bioavailability has limited its development. A variant compound-17α-ethinyl-androst-5-ene-3ß, 17ß-diol (EAD)-exhibits significant oral bioavailability. We investigated the radioprotective effects of EAD via oral administration in mice. METHODS AND MATERIALS: Survival assays were performed in lethally (9.0-10.0 Gy) irradiated mice. Peripheral blood cell counts were monitored in lethally (9.5 Gy) or sublethally (6.5 Gy) irradiated mice. We performed histologic analysis of bone marrow (BM) and frequency and functional analysis of hematopoietic stem and progenitor cells in mice irradiated with 6.5 Gy. To investigate multilineage engraftment of irradiated hematopoietic stem cells after BM transplantation, competitive repopulation assays were conducted. Plasma granulocyte colony-stimulating factor was measured by enzyme-linked immunosorbent assay. RESULTS: Oral administration of EAD on 3 consecutive days before irradiation conferred 100% survival in mice, against otherwise 100% death, at a 9.5-Gy lethal dose of total body irradiation. EAD ameliorated radiation-induced pancytopenia at the same dose. EAD augmented BM cellular recovery and colony-forming ability, promoted hematopoietic stem and progenitor cell recovery, and expanded the pool of functionally superior hematopoietic stem cells in the BM of sublethally irradiated mice. Unlike 5-AED, EAD did not increase granulocyte colony-stimulating factor levels in mice and exhibited no therapeutic effects on hematologic recovery after irradiation; nevertheless, its radioprotective efficacy was superior to that of 5-AED. CONCLUSIONS: Our findings demonstrate the radioprotective efficacy of EAD and reveal that the 17α-ethinyl group is essential for its oral activity. Given its oral efficacy and low toxicity, EAD has potential as an optimal radioprotector for use by first responders, as well as at-risk civilian populations.


Assuntos
Fator Estimulador de Colônias de Granulócitos/fisiologia , Células-Tronco Hematopoéticas/efeitos da radiação , Protetores contra Radiação/farmacologia , Animais , Transplante de Medula Óssea , Células-Tronco Hematopoéticas/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Irradiação Corporal Total
17.
Int J Radiat Oncol Biol Phys ; 102(5): 1577-1589, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30092334

RESUMO

PURPOSE: Oral mucositis is one of the most prevalent side effects in patients undergoing radiation therapy for head and neck cancers. Current therapeutic agents such as palifermin recombinant human keratinocyte growth factor and amifostine do not efficiently or fully prevent mucositis. Dimethyl sulfoxide (DMSO), a free-radical scavenger, has shown therapeutic benefits in many preclinical and clinical studies. This study aimed to investigate the efficacy of DMSO in a clinically relevant mouse model of acute, radiation-induced oral mucositis. METHODS AND MATERIALS: Oral mucositis was induced by a high single and fractioned irradiation of the head and neck area in C57BL/6J mice, and the effects of DMSO (by intraperitoneal injection) were assessed by macroscopic and histopathological examination. Epithelial stem and progenitor cells were analyzed by immunohistochemical staining of p63 and Ki-67, and DNA double-strand breaks (DSBs) were visualized by immunofluorescence detection of γ-H2AX. Tumor xenograft was obtained using CAL-27 cells. RESULTS: Pretreatment with DMSO protected the oral mucosa from severe acute radiation injury, reduced the extent of radiation-induced weight loss, and had no significant effects on tumor weight in irradiated or nonirradiated xenograft mice. Furthermore, the efficacy of DMSO was superior to that of recombinant human keratinocyte growth factor and amifostine. DMSO treatment prevented the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation. More interestingly, the average levels of γ-H2AX foci were significantly decreased in p63-positive epithelial stem cells at 6 hours, but not at 2 hours, after irradiation, indicating that DMSO facilitated DNA DSB repair rather than suppressing the indirect action of irradiation. CONCLUSIONS: DMSO prevents the loss of proliferative lingual epithelial stem and progenitor cells upon irradiation by facilitating DNA DSB repair, thereby protecting against radiation-induced mucositis without tumor protection. Given its high efficacy and low toxicity, DMSO could be a potential treatment option to prevent radiation-induced oral mucositis.


Assuntos
Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Lesões Experimentais por Radiação/prevenção & controle , Células-Tronco/efeitos dos fármacos , Estomatite/prevenção & controle , Animais , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos da radiação , Relação Dose-Resposta à Radiação , Epitélio/patologia , Neoplasias de Cabeça e Pescoço/radioterapia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Lesões Experimentais por Radiação/genética , Lesões Experimentais por Radiação/patologia , Células-Tronco/patologia , Células-Tronco/efeitos da radiação , Estomatite/etiologia , Estomatite/genética , Estomatite/patologia
18.
Biochem Biophys Res Commun ; 502(1): 110-115, 2018 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29787755

RESUMO

Differentiation therapies have been proposed to overcome the impaired cell differentiation in acute myeloid leukemia (AML). However, thus far the all-trans retinoic acid-based differentiation therapy has been the only successful modality in treating acute promyelocytic leukemia. Here, we showed that vibsanin A, a novel protein kinase C (PKC) activator, sensitized AML cells to tyrosine kinase inhibitor (TKI)-induced differentiation. Vibsanin A augmented the ability of TKIs to induce growth inhibition and G1 cell cycle arrest of AML cells. Mechanistically, PKC activation was involved in the differentiation-inducing effects of combining vibsanin A with TKIs. Moreover, we found that vibsanin A enhanced TKI-induced Lyn expression and suppression of Lyn interfered with AML cell differentiation, indicating an essential role for Lyn expression in the combination-induced differentiation. Finally, combining vibsanin A and TKIs enhanced the activation of the Raf/MEK/ERK cascade. Together, this is the first study to evaluate the synergy of vibsanin A and TKIs in AML cell differentiation. Our study lays the foundation in assessing new opportunities for the combination of vibsanin A and TKIs as a promising approach for future differentiation therapy.


Assuntos
Diterpenos/farmacologia , Ativadores de Enzimas/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Quinases da Família src/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Células Mieloides/citologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo , Células Mieloides/patologia , Proteínas Tirosina Quinases/metabolismo
19.
Analyst ; 143(9): 2115-2121, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29648566

RESUMO

In accidental irradiation situations, rapid in-field evaluation of acute radiation syndrome is critical for effective triage and timely medical treatment of irradiated individuals. A surface-enhanced Raman scattering (SERS)-based lateral flow assay was developed for the quantitative detection of C-reactive protein (CRP) as an early bio-indicator of a radiation-induced inflammatory response in nonhuman primates. Raman reporter-embedded gold-core silver-shell nanoparticles with built-in hot spots were synthesized and conjugated with a CRP detection antibody to serve as SERS tags in the lateral flow assay. The proposed SERS-based lateral flow assay can rapidly detect CRP with a limit of detection of 0.01 ng mL-1 and quantitative analysis ability. Furthermore, the assay was applied to evaluate the CRP levels in plasma samples of irradiated nonhuman primates at 0 to 80 h after exposure to sublethal (4 Gy) and lethal (8 Gy) doses of total body irradiation (n = 3 animals per group). The plasma CRP levels increase rapidly within few hours after irradiation. The CRP level peaks are observed at 12 or 24 h after irradiation, with a concentration of 201.30, 386.06 and 475.18 µg mL-1 for the 4 Gy irradiated animals and 197.14, 69.52 and 358.03 µg mL-1 for the 8 Gy irradiated animals. The results indicate the potential application of the proposed SERS-based lateral flow assay to serve as a rapid and accurate point-of-care biodosimetry assay for the quantitative detection of bio-indicators to triage irradiated individuals in the field of a radiation accident.


Assuntos
Proteína C-Reativa/análise , Inflamação/diagnóstico , Lesões por Radiação/diagnóstico , Análise Espectral Raman , Animais , Bioensaio , Feminino , Ouro , Humanos , Macaca mulatta , Masculino , Nanopartículas Metálicas , Primatas
20.
Leuk Lymphoma ; 59(10): 2414-2422, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29334822

RESUMO

Identifying novel differentiating agents to promote leukemia-cell differentiation is a pressing need. Here, we demonstrated that vibsanol A, a vibsane-type diterpenoid, inhibited the growth of acute myeloid leukemia (AML) cells via induction of cell differentiation, which was characterized by G1 cell cycle arrest. The differentiation-inducing effects of vibsanol A were dependent upon protein kinase C (PKC) activation, and subsequent activation of the extracellular signal-regulated kinase (ERK) pathway. Furthermore, vibsanol A treatment increased reactive oxygen species (ROS) levels, and the ROS scavenger NAC reversed the vibsanol A-induced cell differentiation, indicating an important role for ROS in the action of vibsanol A. Finally, vibsanol A exhibited a differentiation-enhancing effect when used in combination with all-trans retinoic acid in AML cells. Overall results suggested that vibsanol A induces AML cell differentiation via activation of the PKC/ERK signaling and induction of ROS. Vibsanol A may prove to be an effective differentiating agent against AML.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Diterpenos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Linhagem Celular Tumoral , Diterpenos/isolamento & purificação , Diterpenos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Sequestradores de Radicais Livres/farmacologia , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/patologia , Inibidores de Proteínas Quinases/isolamento & purificação , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Viburnum/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA