Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Bioorg Chem ; 116: 105328, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34500307

RESUMO

Four new triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues were synthesized by coupling with 8-bromoctyl- or 10- bromdecyltriphenylphosphonium bromide and evaluated for the in vitro antibacterial activity against S. aureus, B. cereus, E. faecalis, two MRSA strains isolated from patients and resistant to fluoroquinolone antibiotic ciprofloxacin and ß-lactam antibiotic amoxicillin, E. coli, antifungal activity against T. mentagrophytes C. albicans and cytotoxicity against human cancer cell lines M-HeLa, MCF-7, A549, HuTu-80, PC3, PANC-1 and normal cell line Wi-38. In these compounds a TPP cation was attached via an octyl or a decyl linker to the N 3 atom of the heterocycle moiety (thymine, 6-methyluracil, quinazoline-2,4-dione) which was bonded with 2',3',5'-tri- O - acetyl-greek beta-d-ribofuranose residue by the (1,2,3-triazol-4-il)methyl bridge. All synthesized compounds showed high antibacterial activity against S. aureus within the range of MIC values 1.2-4.3 greek muM, and three of them appeared to be bactericidal with respect to tis bacterium at MBC values 4.1-4.3 greek muM. Two lead compounds showed both high antibacterial activity against the MRSA strains resistant to Ciprofloxacin and Amoxicillin within the range of MIC values 1.0-4.3 greek muM and high cytotoxicity against human cancer cell lines HuTu-80 and MCF-7 within the range of IC50 values 6.4-10.2 greek muM. This is one of the few examples when phosphonium salts exhibited both antibacterial activity and cytotoxicity against human cancer cell lines. According to the results obtained the bactericidal effect of the lead compounds, unlike classical surfactants, was not caused by a violation of the integrity of the cytoplasmic membrane of bacteria and their cytotoxic activity is most likely associated both with the induction of apoptosis along the mitochondrial pathway and the arrest of the cell cycle in the G0/G1 phase.


Assuntos
Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Compostos Organofosforados/farmacologia , Triazóis/farmacologia , Antibacterianos/síntese química , Antibacterianos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Bacillus cereus/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Enterococcus faecalis/efeitos dos fármacos , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Simulação de Acoplamento Molecular , Estrutura Molecular , Compostos Organofosforados/química , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade , Triazóis/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA