Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 433: 128781, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35405587

RESUMO

In this study, chitosan-based silicon nanoparticles (Chsi-NPs) are prepared that primarily consists of C (57.9%), O (31.3%), N (5.6%), and Si (3.5%) and are 10-180 nm in size. We then explore the effect on the foliage applied on rice planted on soil contaminated with 104 mg·kg-1 arsenic (As); low (3 mg·L-1)and high (15 mg·L-1) doses of the foliar Chsi-NPs are administered during the rice grain filling stage. The results showed that the higher dose foliar Chsi-NPs treatment reduced the As concentration in the grain by 61.2% but increased As concentration in the leaves by 47.1% compared to the control treatment. The foliar spraying of the Chsi-NPs inhibited As transport to the grain by facilitating the attachment of As to the cell wall, with higher doses of the foliar Chsi-NPs treatment increased by 8.7%. The foliar spraying of Chsi-NPs increased the malondialdehyde levels by 18.4%, the catalase activity by 49.0%, and the glutathione activity by 99.0%. These results indicated that the foliar Chsi-NPs application was effective for alleviating As toxicity and accumulation in rice. This study provides a novel method for effectively alleviating As accumulation in rice.


Assuntos
Arsênio , Quitosana , Nanopartículas , Oryza , Poluentes do Solo , Arsênio/análise , Arsênio/toxicidade , Cádmio/análise , Quitosana/farmacologia , Grão Comestível/química , Silício/farmacologia , Solo , Poluentes do Solo/análise , Poluentes do Solo/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA