Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Aging Neurosci ; 16: 1446523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39391586

RESUMO

Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.

2.
J Biol Chem ; 293(28): 11131-11142, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29794137

RESUMO

5-Methoxytryptophan (5-MTP) is a tryptophan metabolite with recently discovered anti-inflammatory and tumor-suppressing activities. Its synthesis is catalyzed by a hydroxyindole O-methyltransferase (HIOMT)-like enzyme. However, the exact identity of this HIOMT in human cells remains unclear. Human HIOMT exists in several alternatively spliced isoforms, and we hypothesized that 5-MTP-producing HIOMT is a distinct isoform. Here, we show that human fibroblasts and cancer cells express the HIOMT298 isoform as contrasted with the expression of the HIOMT345 isoform in pineal cells. Sequencing analysis of the cloned isoforms revealed that HIOMT298 is identical to the sequence of a previously reported truncated HIOMT isoform. Of note, HIOMT298 expression was reduced in cancer cells and tissues. Stable transfection of A549 cancer cells with HIOMT298 restored HIOMT expression to normal levels, accompanied by 5-MTP production. Furthermore, HIOMT298 transfection caused a tryptophan-metabolic switch from serotonin to 5-MTP production. To determine the in vivo relevance of this alteration, we compared growth and lung metastasis of HIOMT298-transfected A549 cells with those of vector- or untransfected A549 cells as controls in a murine xenograft model. Of note, the HIOMT298-transfected A549 cells exhibited slower growth and lower metastasis than the controls. Our findings provide insight into the crucial role of HIOMT298 in 5-MTP production in cells and in inhibiting cancer progression and highlight the potential therapeutic value of 5-MTP for managing cancer.


Assuntos
Acetilserotonina O-Metiltransferasa/metabolismo , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Serotonina/metabolismo , Triptofano/análogos & derivados , Triptofano/metabolismo , Animais , Apoptose , Proliferação de Células , Humanos , Masculino , Camundongos , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA