Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Foods ; 10(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34828811

RESUMO

The triacylglycerol (TAG) compositions of blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils were examined using ultra-performance convergence chromatography-quadrupole time-of-flight mass spectrometry (UPC2-QTOF MS). A total of 52, 53, 52, 59 and 58 TAGs were detected and tentatively identified from the blackberry, red raspberry, black raspberry, blueberry and cranberry seed oils, respectively, according to their accurate molecular weight in MS1 and fragment ion profiles in MS2. OLL was the most abundant TAG in the blackberry, red raspberry and black raspberry seed oils. Furthermore, the fatty acid compositions of the five berry seed oils were directly determined by gas chromatography coupled with mass spectrometry (GC-MS). In addition, the seed oils had total phenolic contents ranging 13.68-177.06 µmol GAE (gallic acid equivalent)/L oil, and significant scavenging capacities against DPPH, peroxyl, and ABTS+ radicals. These results indicated that the combination of UPC2 and QTOF MS could effectively identify and semi-quantify the TAGs compositions of the berry seed oils with sn-position information for the fatty acids. Understanding the TAGs compositions of these berry seed oils could improve the utilization of these potentially high nutritional value oils for human health.

2.
Foods ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32707916

RESUMO

The triacylglycerol (TAG) compositions of cucumber, tomato, pumpkin, and carrot seed oils were analyzed using ultra-performance convergence chromatography (UPC2) combined with quadrupole time-of-flight mass spectrometry (Q-TOF MS). A total of 36, 42, 39, and 27 different TAGs were characterized based on their Q-TOF MS accurate molecular weight and MS2 fragment ion profiles in the cucumber, tomato, pumpkin, and carrot seed oils, respectively. Generally, different vegetable seed oils had different TAGs compositions. Among the identified fatty acids, linoleic acid was the most abundant fatty acid in cucumber, tomato, and pumpkin seed oils and the second most abundant in carrot seed oil with relative concentrations of 54.48, 48.69, 45.10, and 15.92 g/100 g total fatty acids, respectively. Oleic acid has the highest concentration in carrot seed oil and the second highest in cucumber, tomato, and pumpkin seed oils, with relative concentrations of 78.97, 18.57, 27.16, and 33.39 g/100 g total fatty acids, respectively. The chemical compositions of TAGs and fatty acids could promote understanding about the chemical profiles of certain vegetable seed oils, thus improving the potential ability to select appropriate oils with specific functions and a high nutritional value and then develop functional foods in the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA