Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biodes Res ; 6: 0030, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550916

RESUMO

In the biotechnological industry, multicopy gene integration represents an effective strategy to maintain a high-level production of recombinant proteins and to assemble multigene biochemical pathways. In this study, we developed copper-induced in vivo gene amplification in budding yeast for multicopy gene expressions. To make copper as an effective selection pressure, we first constructed a copper-sensitive yeast strain by deleting the CUP1 gene encoding a small metallothionein-like protein for copper resistance. Subsequently, the reporter gene fused with a proline-glutamate-serine-threonine-destabilized CUP1 was integrated at the δ sites of retrotransposon (Ty) elements to counter the copper toxicity at 100 µM Cu2+. We further demonstrated the feasibility of modulating chromosomal rearrangements for increased protein expression under higher copper concentrations. In addition, we also demonstrated a simplified design of integrating the expression cassette at the CUP1 locus to achieve tandem duplication under high concentrations of copper. Taken together, we envision that this method of copper-induced in vivo gene amplification would serve as a robust and useful method for protein overproduction and metabolic engineering applications in budding yeast.

2.
Biotechnol Biofuels Bioprod ; 17(1): 4, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184607

RESUMO

BACKGROUND: Vanillin represents one of the most widely used flavoring agents in the world. However, microbial synthesis of vanillin is hindered by the host native metabolism that could rapidly degrade vanillin to the byproducts. RESULTS: Here, we report that the industrial workhorse Saccharomyces cerevisiae was engineered by systematic deletion of oxidoreductases to improve the vanillin accumulation. Subsequently, we harnessed the minimal aromatic aldehyde reduction (MARE) yeast platform for de novo synthesis of vanillin from glucose. We investigated multiple coenzyme-A free pathways to improve vanillin production in yeast. The vanillin productivity in yeast was enhanced by multidimensional engineering to optimize the supply of cofactors (NADPH and S-adenosylmethionine) together with metabolic reconfiguration of yeast central metabolism. The final yeast strain with overall 24 genetic modifications produced 365.55 ± 7.42 mg l-1 vanillin in shake-flasks, which represents the best reported vanillin titer from glucose in yeast. CONCLUSIONS: The success of vanillin overproduction in budding yeast showcases the great potential of synthetic biology for the creation of suitable biocatalysts to meet the requirement in industry. Our work lays a foundation for the future implementation of microbial production of aromatic aldehydes in budding yeast.

3.
Biodes Res ; 6: 0026, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213763

RESUMO

Microbial synthesis of carotenoids is a highly desirable alternative to plant extraction and chemical synthesis. In this study, we investigated multidimensional strategies to improve the carotenoid synthesis in the industrial workhorse of Saccharomyces cerevisiae. First, we rewired the yeast central metabolism by optimizing non-oxidative glycolysis pathway for an improved acetyl-CoA supply. Second, we restricted the consumption of farnesyl pyrophosphate (FPP) by the down-regulation of squalene synthase using the PEST degron. Third, we further explored the human lipid binding/transfer protein saposin B (hSapB)-mediated metabolic sink for an enhanced storage of lipophilic carotenoids. Last, the copper-induced GAL expression system was engineered to function in the yeast-peptone-dextrose medium for an increased biomass accumulation. By combining the abovementioned strategies, the final engineered yeast produced 166.79 ± 10.43 mg/l ß-carotene in shake flasks, which was nearly 5-fold improvement of the parental carotenoid-producing strain. Together, we envision that multidimensional strategies reported here might be applicable to other hosts for the future industrial development of carotenoid synthesis from renewable feedstocks.

4.
Biosens Bioelectron ; 250: 116058, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38281368

RESUMO

The rapid and accurate detection of fungal pathogens is of utmost importance in the fields of healthcare, food safety, and environmental monitoring. In this study, we implemented a cascaded amplifying circuit in Saccharomyces cerevisiae to improve the G protein-coupled receptor (GPCR) mediated fungal detection. The GPCR signaling pathway was coupled with the galactose-regulated (GAL) system and a positive feedback loop was implemented to enhance the performance of yeast biosensor. We systematically compared four generations of biosensors for detecting the mating pheromone of Candida albicans, and the best biosensor exhibited the limit of detection (LOD) as low as 0.25 pM and the limit of quantification (LOQ) of 1 pM after 2 h incubation. Subsequently, we developed a betaxanthin-based colorimetric module for the easy visualization of signal outputs, and the resulting biosensors can give reliable naked-eye readouts. In summary, we demonstrated that cascaded amplifying circuits could substantially improve the engineered yeast biosensors with a better sensitivity and signal output magnitude, which will pave the way for their real-world applications in public health.


Assuntos
Técnicas Biossensoriais , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Técnicas Biossensoriais/métodos , Transdução de Sinais , Receptores Acoplados a Proteínas G/metabolismo , Feromônios/metabolismo
5.
Curr Opin Biotechnol ; 84: 103015, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913603

RESUMO

Microbial synthesis of biofuels offers a promising solution to the global environmental and energy concerns. However, the main challenge of microbial cell factories is their high fermentation costs. Model hosts, such as Escherichia coli and Saccharomyces cerevisiae, are typically used for proof-of-concept studies of producing different types of biofuels, however, they have a limited potential for biofuel production at an industrially relevant scale due to the weak stability/robustness and narrow substrate scope. With the advancements of synthetic biology and metabolic engineering, nonmodel eukaryotes, with naturally favorable phenotypic and metabolic features, have been emerging as promising biofuel producers. Here, we introduce the emerging nonmodel eukaryotes for the biofuel production and discuss their specific advantages, especially those with the capacity of producing cellulosic ethanol, higher alcohols, and fatty acid-/terpene-derived biofuel molecules. We also propose the challenges and prospects for developing nonmodel eukaryotic as the ideal hosts for future biofuel production.


Assuntos
Biocombustíveis , Etanol , Etanol/metabolismo , Engenharia Metabólica , Fermentação , Escherichia coli/metabolismo , Saccharomyces cerevisiae/metabolismo
6.
Cell Rep Methods ; 3(12): 100647, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37989311

RESUMO

Dynamically regulated systems are preferable to control metabolic pathways for an improved strain performance with better productivity. Here, we harnessed to the G protein-coupled receptor (GPCR) signaling pathway to reshape the yeast galactose regulon. The galactose-regulated (GAL) system was coupled with the GPCR signaling pathway for mating pheromone via a synthetic transcription factor. In this study, we refabricated the dynamic range, sensitivity, and response time of the GAL system to α factor by modulating the key components of the GPCR signaling cascade. A series of engineered yeasts with self-secretion of α factor were constructed to achieve quorum-sensing behaviors. In addition, we also repurposed the GAL system to make it responsive to heat shock. Taken together, our work showcases the great potential of synthetic biology in creating user-defined metabolic controls. We envision that the plasticity of our genetic design would be of significant interest for the future fabrication of novel gene expression systems.


Assuntos
Galactose , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Galactose/metabolismo , Regulon/genética , Transdução de Sinais/genética , Fatores de Transcrição/genética
7.
Biotechnol Biofuels Bioprod ; 16(1): 160, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891652

RESUMO

BACKGROUND: Whole-cell biocatalysis has been exploited to convert a variety of substrates into high-value bulk or chiral fine chemicals. However, the traditional whole-cell biocatalysis typically utilizes the heterotrophic microbes as the biocatalyst, which requires carbohydrates to power the cofactor (ATP, NAD (P)H) regeneration. RESULTS: In this study, we sought to harness purple non-sulfur photosynthetic bacterium (PNSB) as the biocatalyst to achieve light-driven cofactor regeneration for cascade biocatalysis. We substantially improved the performance of Rhodopseudomonas palustris-based biocatalysis using a highly active and conditional expression system, blocking the side-reactions, controlling the feeding strategy, and attenuating the light shading effect. Under light-anaerobic conditions, we found that 50 mM ferulic acid could be completely converted to vanillyl alcohol using the recombinant strain with 100% efficiency, and > 99.9% conversion of 50 mM p-coumaric acid to p-hydroxybenzyl alcohol was similarly achieved. Moreover, we examined the isoprenol utilization pathway for pinene synthesis and 92% conversion of 30 mM isoprenol to pinene was obtained. CONCLUSIONS: Taken together, these results suggested that R. palustris could be a promising host for light-powered biotransformation, which offers an efficient approach for synthesizing value-added chemicals in a green and sustainable manner.

8.
ACS Synth Biol ; 12(9): 2783-2788, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37603344

RESUMO

The commonly used expression systems in Saccharomyces cerevisiae typically rely on either constitutive or galactose-regulated promoters. The lack of inducible systems in S. cerevisiae limits the precise temporal regulation of protein function and yeast metabolism. We herein repurposed the galactose-regulated system to make it respond to cyanamide. By using a cyanamide-inducible DDI2 promoter to control Gal4 expression in CEN.PK2-1C with Δgal80, a tight and graded cyanamide-inducible GAL system with an enhanced signal output was constructed. Subsequently, we demonstrated that the cyanamide-inducible GAL system was capable of tightly regulating the pentafunctional Aro1 protein to achieve conditional shikimate pathway activity. Taken together, the cyanamide-inducible GAL system could be implemented for both fundamental research and applied biotechnology.


Assuntos
Cianamida , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cianamida/farmacologia , Galactose , Regulon
9.
J Appl Microbiol ; 134(6)2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230951

RESUMO

AIMS: The inducible expression system plays an important role in engineering Escherichia coli for chemical production. However, it still heavily relies on expensive chemical inducers, like IPTG. There is a pressing need to develop alternative expression systems with more affordable inducers. MATERIALS AND RESULTS: We herein report a copper-inducible expression system in E. coli based on the two-component Cus system and T7 RNA polymerase (RNAP). By integrating the gene encoding T7 RNAP at the CusC locus, we managed to program eGFP expression under the T7 promoter in response to different concentrations of Cu2+ (0-20 µM). Subsequently, we demonstrated that the copper-inducible expression system was suitable for the metabolic engineering of E. coli toward protocatechuic acid overproduction, and the resulting strain with combined manipulation of the central metabolism via CRISPRi produced 4.12 g L-1 PCA under the optimal copper concentration and induction time. CONCLUSIONS: We have established a copper-inducible T7 RNAP expression system in E. coli. The copper-inducible expression system could rationally control metabolic pathways in a temporal and dose-dependent manner. The gradient expression system based on copper inducer could be widely used in E. coli cell factories, and the design principle reported here would also be applicable in other prokaryotes.


Assuntos
Cobre , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cobre/metabolismo , Engenharia Metabólica/métodos , Regiões Promotoras Genéticas , Redes e Vias Metabólicas
10.
Materials (Basel) ; 16(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37049212

RESUMO

During the process of mechanized excavation, rock is essentially subjected to cyclic point loading (CPL). To understand the CPL fatigue behavior of rock materials, a series of CPL tests are conducted on sandstone samples by using a self-developed vibration point-load apparatus. The effects of loading frequency and waveform on rock fatigue properties under CPL conditions are specifically investigated. The load and indentation depth histories of sandstone samples during testing are monitored and logged. The variation trends of fatigue life (failure time) under different loading conditions are obtained. Test results indicate that the fatigue life of the sandstone sample exposed to CPL is dependent on both loading frequency and waveform. As the loading frequency rises, the fatigue life of the sandstone first declines and then increases, and it becomes the lowest at 0.5 Hz. In terms of waveform, the fatigue life of the sandstone is largest under the trigonal wave and is least under the rectangular wave. These findings can provide valuable theoretical support for optimizing the rock cutting parameters to enhance the efficiency of mechanized excavation.

11.
Nat Prod Rep ; 40(8): 1303-1353, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-36454108

RESUMO

Covering: up to 2022Pentacyclic triterpenoids are important natural bioactive substances that are widely present in plants and fungi. They have significant medicinal efficacy, play an important role in reducing blood glucose and protecting the liver, and have anti-inflammatory, anti-oxidation, anti-fatigue, anti-viral, and anti-cancer activities. Pentacyclic triterpenoids are derived from the isoprenoid biosynthetic pathway, which generates common precursors of triterpenes and steroids, followed by cyclization with oxidosqualene cyclases (OSCs) and decoration via cytochrome P450 monooxygenases (CYP450s) and glycosyltransferases (GTs). Many biosynthetic pathways of triterpenoid saponins have been elucidated by studying their metabolic regulation network through the use of multiomics and identifying their functional genes. Unfortunately, natural resources of pentacyclic triterpenoids are limited due to their low content in plant tissues and the long growth cycle of plants. Based on the understanding of their biosynthetic pathway and transcriptional regulation, plant bioreactors and microbial cell factories are emerging as alternative means for the synthesis of desired triterpenoid saponins. The rapid development of synthetic biology, metabolic engineering, and fermentation technology has broadened channels for the accumulation of pentacyclic triterpenoid saponins. In this review, we summarize the classification, distribution, structural characteristics, and bioactivity of pentacyclic triterpenoids. We further discuss the biosynthetic pathways of pentacyclic triterpenoids and involved transcriptional regulation. Moreover, the recent progress and characteristics of heterologous biosynthesis in plants and microbial cell factories are discussed comparatively. Finally, we propose potential strategies to improve the accumulation of triterpenoid saponins, thereby providing a guide for their future biomanufacturing.


Assuntos
Produtos Biológicos , Saponinas , Triterpenos , Triterpenos Pentacíclicos/metabolismo , Produtos Biológicos/metabolismo , Triterpenos/química , Plantas/metabolismo , Saponinas/química
13.
Appl Microbiol Biotechnol ; 106(24): 8169-8181, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36401644

RESUMO

Cyanobacteria are of particular interest for chemical production as they can assimilate CO2 and use solar energy to power chemical synthesis. However, unlike the model microorganism of Escherichia coli, the availability of genetic toolboxes for rapid proof-of-concept studies in cyanobacteria is generally lacking. In this study, we first characterized a set of promoters to efficiently drive gene expressions in the marine cyanobacterium Synechococcus sp. PCC7002. We identified that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002. Next, a set of shuttle vectors was constructed based on the endogenous pAQ1 plasmid to facilitate the rapid pathway assembly. Moreover, we used the shuttle vectors to modularly optimize the amorpha-4,11-diene synthesis in PCC7002. By modularly optimizing the metabolic pathway, we managed to redistribute the central metabolism toward the amorpha-4,11-diene production in PCC7002 with enhanced product titer. Taken together, the plasmid toolbox developed in this study will greatly accelerate the generation of genetically engineered PCC7002. KEY POINTS: • Promoter characterization revealed that the endogenous cpcBA promoter represented one of the strongest promoters in PCC7002 • A set of shuttle vectors with different antibiotic selection markers was constructed based on endogenous pAQ1 plasmid • By modularly optimizing the metabolic pathway, amorpha-4,11-diene production in PCC7002 was improved.


Assuntos
Synechococcus , Synechococcus/genética
14.
J Appl Microbiol ; 133(5): 2931-2940, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35938518

RESUMO

AIMS: Aromatic amines with diverse physical characteristics are often employed as antioxidants and precursors to pharmaceutical products. As the traditional chemical methods pose serious environmental pollution, there is an arising interest in biomanufacturing aromatic amines from renewable feedstocks. MATERIALS AND RESULTS: We report the establishment of a bacterial platform for synthesizing three types of aromatic amines, namely, tyramine, dopamine and phenylethylamine. First, we expressed aromatic amino acid decarboxylase from Enterococcus faecium (pheDC) in an Escherichia coli strain with increasing shikimate (SHK) pathway flux towards L-tyrosine. We found that glycerol served as a better carbon source than glucose, resulting in 940 ± 46 mg/L tyramine from 4% glycerol. Next, the genes of lactate dehydrogenase (ldhA), pyruvate formate lyase (pflB), phosphate acetyltransferase (pta) and alcohol dehydrogenase (adhE) were deleted to mitigate the fermentation by-product formation. The tyramine level was further increased to 1.965 ± 0.205 g/L in the shake flask, which was improved by 2.1 times compared with that of the parental strain. By using a similar strategy, we also managed to produce 703 ± 21 mg/L dopamine and 555 ± 50 mg/L phenethylamine. CONCLUSIONS: We demonstrated that the knockout of ldhA-pflB-pta-adhE is an effective strategy for improving aromatic amine productions. SIGNIFICANCE AND IMPACT OF THE STUDY: This study achieved the highest aromatic amine titres in E. coli under shake flask reported to date.


Assuntos
Escherichia coli , Liases , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfato Acetiltransferase/metabolismo , Álcool Desidrogenase/genética , Glicerol/metabolismo , Dopamina/metabolismo , Fermentação , Glucose/metabolismo , Piruvatos/metabolismo , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Tirosina/metabolismo , Tiramina , Fenetilaminas/metabolismo , Carbono/metabolismo , Preparações Farmacêuticas , Lactato Desidrogenases/metabolismo , Formiatos/metabolismo , Liases/metabolismo , Engenharia Metabólica
15.
Small ; 18(33): e2203519, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35858226

RESUMO

Tin oxide (SnO2 ) nanocrystals-based electron transport layer (ETL) has been widely used in perovskite solar cells due to its high charge mobility and suitable energy band alignment with perovskite, but the high surface trap density of SnO2 nanocrystals harms the electron transfer and collection within device. Here, an effective method to achieve a low trap density and high electron mobility ETL based on SnO2 nanocrystals by devising a difunctional additive of potassium trifluoroacetate (KTFA) is proposed. KTFA is added to the SnO2 nanocrystals solution, in which trifluoroacetate ions could effectively passivate the oxygen vacancies (OV ) in SnO2 nanocrystals through binding of TFA- and Sn4+ , thus reducing the traps of SnO2 nanocrystals to boost the electrons collection in the solar cell. Furthermore, the conduction band of SnO2 nanocrystals is shifted up by surface modification to close to that of perovskite, which facilitates electrons transfer because of the decreased energy barrier between ETL and perovskite layer. Benefiting from the decreased trap density and energy barrier, the perovskite solar cells exhibit a power conversion efficiency of 21.73% with negligible hysteresis.

16.
Microb Biotechnol ; 15(11): 2854-2860, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35829650

RESUMO

Heavy metals, that is Cu(II), are harmful to the environment. There is an increasing demand to develop inexpensive detection methods for heavy metals. Here, we developed a yeast biosensor with reduced-noise and improved signal output for potential on-site copper ion detection. The copper-sensing circuit was achieved by employing a secondary genetic layer to control the galactose-inducible (GAL) system in Saccharomyces cerevisiae. The reciprocal control of the Gal4 activator and Gal80 repressor under copper-responsive promoters resulted in a low-noise and sensitive yeast biosensor for copper ion detection. Furthermore, we developed a betaxanthin-based colorimetric assay, as well as 2-phenylethanol and styrene-based olfactory outputs for the copper ion detection. Notably, our engineered yeast sensor confers a narrow range switch-like behaviour, which can give a 'yes/no' response when coupled with a betaxanthin-based visual phenotype. Taken together, we envision that the design principle established here might be applicable to develop other sensing systems for various chemical detections.


Assuntos
Técnicas Biossensoriais , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Cobre , Fatores de Transcrição/genética , Betaxantinas , Proteínas Repressoras , Galactose/genética , Técnicas Biossensoriais/métodos
17.
ACS Synth Biol ; 11(4): 1669-1680, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35286065

RESUMO

Plant steroid glycosides, such as phytosterol glycosides, steroidal saponins, and steroidal glycoalkaloids, are natural products with great pharmaceutical values. In this study, we characterized three UDP-glycosyltransferases (UGTs) involved in the glycosylation of steroidal sapogenin from Paris polyphylla. Substrate specificity analysis revealed that UGT73CR1 could glycosylate steroidal sapogenins and steroidal alkaloids, with the highest affinity for diosgenin. The residues His27 and Asp129 of UGT73CR1 are conserved in corresponding positions of plant glycosyltransferases, which are crucial for activating the C-3 OH of the receptor substrates. In comparison, UGT80A33 and UGT80A34 exhibited a higher affinity for cholesterol than other steroids. UGT80s have a larger active pocket, which allows them to accommodate the side chain of sterols. In summary, we assessed three P. polyphylla glycosyltransferases from two UGT families for the functionalization of steroidal molecules, which will provide a basis for the future biomanufacturing of diverse bioactive steroid glycosides.


Assuntos
Liliaceae , Fitosteróis , Saponinas , Glicosídeos , Glicosiltransferases/química , Glicosiltransferases/genética , Liliaceae/química , Saponinas/química
18.
Chembiochem ; 23(8): e202100661, 2022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35132758

RESUMO

Enantiopure amino acids are of particular interest in the agrochemical and pharmaceutical industries. Here, we report a multi-enzyme cascade for efficient production of L-phenylglycine (L-Phg) from biobased L-phenylalanine (L-Phe). We first attempted to engineer Escherichia coli for expressing L-amino acid deaminase (LAAD) from Proteus mirabilis, hydroxymandelate synthase (HmaS) from Amycolatopsis orientalis, (S)-mandelate dehydrogenase (SMDH) from Pseudomonas putida, the endogenous aminotransferase (AT) encoded by ilvE and L-glutamate dehydrogenase (GluDH) from E. coli. However, 10 mM L-Phe only afforded the synthesis of 7.21±0.15 mM L-Phg. The accumulation of benzoylformic acid suggested that the transamination step might be rate-limiting. We next used leucine dehydrogenase (LeuDH) from Bacillus cereus to bypass the use of L-glutamate as amine donor, and 40 mM L-Phe gave 39.97±3.84 mM (6.04±0.58 g/L) L-Phg, reaching 99.9 % conversion. In summary, this work demonstrates a concise four-step enzymatic cascade for L-Phg synthesis from biobased L-Phe, with a potential for future industrial applications.


Assuntos
Escherichia coli , Fenilalanina , Aminoácidos/metabolismo , Escherichia coli/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Fenilalanina/metabolismo
19.
ACS Synth Biol ; 11(1): 441-447, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-34985865

RESUMO

Tyrosol is an aromatic compound with great value that is widely used in the food and pharmaceutical industry. In this study, we reported a synthetic pathway for converting p-coumaric acid (p-CA) into tyrosol in Escherichia coli. We found that the enzyme cascade comprising ferulic acid decarboxylase (FDC1) from Saccharomyces cerevisiae, styrene monooxygenase (SMO), styrene oxide isomerase (SOI) from Pseudomonas putida, and phenylacetaldehyde reductase (PAR) from Solanum lycopersicum could efficiently synthesize tyrosol from p-CA with a conversion rate over 90%. To further expand the range of substrates, we also introduced tyrosine ammonia-lyase (TAL) from Flavobacterium johnsoniae to connect the synthetic pathway with the endogenous l-tyrosine metabolism. We found that tyrosol could be efficiently produced from glycerol, reaching 545.51 mg/L tyrosol in a tyrosine-overproducing strain under shake flasks. In summary, we have established alternative routes for tyrosol synthesis from p-CA (a potential lignin-derived biomass), glucose, and glycerol.


Assuntos
Escherichia coli , Álcool Feniletílico , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Metabólica , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Tirosina/metabolismo
20.
J Agric Food Chem ; 69(38): 11336-11341, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529433

RESUMO

Lignin is regarded as the most abundant renewable aromatic compound on earth. In this study, we established Escherichia coli-based whole-cell biocatalytic systems to efficiently convert two lignin-derived substrates (ferulic acid and p-coumaric acid) to gallic acid. For the synthesis of gallic acid from ferulic acid, we used the recombinant E. coli expressing feruloyl-CoA synthetase and enoyl-CoA hydratase/aldolase from Pseudomonas putida, aldehyde dehydrogenase (HFD1) from Saccharomyces cerevisiae, vanillic acid O-demethylase (VanAB) from P. putida, and a mutant version of p-hydroxybenzoate hydroxylase (PobAY385F) from P. putida. Under the fed-batch mode, 19.57 mM gallic acid was obtained from 20 mM ferulic acid with a conversion rate of 97.9%. To achieve gallic acid synthesis from p-coumaric acid, we replaced VanAB with the two-component flavin-dependent monooxygenase (HpaBC) from E. coli. Under optimal conditions, 20 mM p-coumaric acid afforded the production of 19.96 mM gallic acid with near 100% conversion. To the best of our knowledge, our work represented the first study to develop E. coli-based whole-cell biocatalysts for the eco-friendly synthesis of gallic acid from lignin-derived renewable feedstocks.


Assuntos
Lignina , Pseudomonas putida , Ácidos Cumáricos , Escherichia coli/genética , Ácido Gálico , Pseudomonas putida/genética , Ácido Vanílico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA