Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(32): e2220642120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523537

RESUMO

Human face recognition is highly accurate and exhibits a number of distinctive and well-documented behavioral "signatures" such as the use of a characteristic representational space, the disproportionate performance cost when stimuli are presented upside down, and the drop in accuracy for faces from races the participant is less familiar with. These and other phenomena have long been taken as evidence that face recognition is "special". But why does human face perception exhibit these properties in the first place? Here, we use deep convolutional neural networks (CNNs) to test the hypothesis that all of these signatures of human face perception result from optimization for the task of face recognition. Indeed, as predicted by this hypothesis, these phenomena are all found in CNNs trained on face recognition, but not in CNNs trained on object recognition, even when additionally trained to detect faces while matching the amount of face experience. To test whether these signatures are in principle specific to faces, we optimized a CNN on car discrimination and tested it on upright and inverted car images. As we found for face perception, the car-trained network showed a drop in performance for inverted vs. upright cars. Similarly, CNNs trained on inverted faces produced an inverted face inversion effect. These findings show that the behavioral signatures of human face perception reflect and are well explained as the result of optimization for the task of face recognition, and that the nature of the computations underlying this task may not be so special after all.


Assuntos
Reconhecimento Facial , Humanos , Face , Percepção Visual , Orientação Espacial , Automóveis , Reconhecimento Visual de Modelos
2.
Brain Struct Funct ; 220(4): 2073-85, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24771246

RESUMO

White matter tracts are important for the trafficking of neural progenitor cells (NPCs) in both normal and pathological conditions, but the underlying mechanism is not clear. The directionality of white matter is advantageous for molecules or cells to distribute over a long distance, but this feature is unlikely solely responsible for efficient migration. The present study hypothesizes that the efficient migration of NPCs into white matter is under the influences of neurochemical attraction­CXCL12/CXCR4 signaling, a major mechanism underlying the targeted migration of NPCs. To test this view, the present study investigated the effects of CXCL12 administration into the corpus callosum (CC) on the migratory behavior of transplanted NPCs. A living animal tracking platform based on MRI and a magnetic cell labeling technique was employed. The NPCs were magnetically labeled and then transplanted at the right end of the CC. CXCL12 was infused continuously at the left end. Migration of NPCs was monitored repeatedly over a 7-day course using 3D gradient echo T2*-weighted imaging. It was found that, CXCL12 induced NPCs to migrate up to 1,881 µm from the graft whereas the spontaneous migration was mere 200 µm. CXCL12 induced migration that was nine times as efficient in the speed. The results indicate that the CXCL12/CXCR4 signaling may be a mechanism via which NPCs efficiently migrate along the white matter tracts. The study also presents a potential strategy for facilitating the targeted migration in NPC therapy for brain disorders.


Assuntos
Movimento Celular/fisiologia , Quimiocina CXCL12/metabolismo , Células-Tronco Neurais/fisiologia , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia , Substância Branca/fisiologia , Análise de Variância , Animais , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Células Cultivadas , Quimiocina CXCL12/farmacologia , Embrião de Mamíferos , Feminino , Citometria de Fluxo , Fator C1 de Célula Hospedeira/efeitos dos fármacos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/efeitos dos fármacos , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Substância Branca/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA