Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Pharmaceuticals (Basel) ; 17(10)2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39458909

RESUMO

(1) Background: Nifuratel (NF113), derived from nitrofuran, has a specific anti-tumor effect. However, the potential mechanisms of NF113 in triple-negative breast cancer remain unknown. (2) Methods: In the study, CCK8 assay and colony formation assays were used to evaluate the inhibition effect of NF113 on cell proliferation. Apoptosis and cell cycle distribution were tested by flow cytometry. The mechanism of NF113's anti-tumor effect was predicted by transcriptome sequencing and verified by using PCR and Western blot experiments. Breast cancer organoids constructed from the patient-derived tumor xenograft model and the MDA-MB-468 xenograft mouse model were established to evaluate the effect of NF113. (3) Results: Our study showed that NF113 had an anti-tumor effect on triple-negative breast cancer both in vitro and in vivo. NF113 also induced apoptosis and G2/M phase arrest in triple-negative breast cancer cells. Our experimental data further verified that NF113 reduced GADD5A mRNA and protein expression, which were significantly upregulated in breast cancer, with downstream CDC25C and AKT phosphorylation changes. (4) Conclusions: Our data provided compelling evidence that NF113 inhibited breast cancer growth via upregulating GADD45A. Conclusion: NF113 was able to exert inhibitory effects on the proliferation of triple-negative breast cancer in vivo and in vitro, which may induce G2/M phase arrest via the GADD45A/CyclinB/CDK1 pathway and apoptosis via GADD45A/JNK/P38.

2.
J Pharm Pharmacol ; 2024 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-39321327

RESUMO

OBJECTIVES: This study investigates the dual role of ALKBH5, an eraser enzyme, in colorectal cancer (CRC), focusing on how N6-methyladenosine (m6A) mutations influence CRC development and progression. METHODS: We reviewed various studies that highlighted the role of ALKBH5 in colorectal cancer (CRC). This includes the impact of ALKBH5 on tumor cell behavior including immune system interactions, invasion, and proliferation in CRC. We also looked into how ALKBH5 acts as a tumor suppressor under different conditions analyzed clinical data to assess the impact of ALKBH5 expression on outcomes in colorectal cancer patients. KEY FINDINGS: In CRC, ALKBH5 plays a dual role. In certain situations, it inhibits the progression of the tumor, but in other circumstances, it promotes tumor growth and immunosuppression. The interaction with RABA5 plays a role in the development of CRC. Having elevated levels of ALKBH5 has been associated with unfavorable patient outcomes, such as reduced survival rates and more advanced cancer stages. Various factors, including tumor differentiation, TNM stages, and carcinoembryonic antigen (CEA) levels, be linked to ALKBH5 expression. CONCLUSIONS: ALKBH5 plays a complicated and situation-specific role in colorectal cancer (CRC). Targeting ALKBH5 could result in novel therapy options that balance its tumor-promoting and tumor-fighting properties in CRC. Further research into m6A alterations and ALKBH5 could enhance CRC treatment approaches and patient outcomes.

3.
Cancers (Basel) ; 16(17)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39272886

RESUMO

As a crucial amino acid, glutamine can provide the nitrogen and carbon sources needed to support cancer cell proliferation, invasion, and metastasis. Interestingly, different types of breast cancer have different dependences on glutamine. This research shows that basal-like breast cancer depends on glutamine, while the other types of breast cancer may be more dependent on glucose. Glutamine transporter ASCT2 is highly expressed in various cancers and significantly promotes the growth of breast cancer. However, the key regulatory mechanism of ASCT2 in promoting basal-like breast cancer progression remains unclear. Our research demonstrates the significant change in fatty acid levels caused by ASCT2, which may be a key factor in glutamine sensitivity. This phenomenon results from the mutual activation between ASCT2-mediated glutamine transport and lipid metabolism via the nuclear receptor PPARα. ASCT2 cooperatively promoted PPARα expression, leading to the upregulation of lipid metabolism. Moreover, we also found that C118P could inhibit lipid metabolism by targeting ASCT2. More importantly, this research identifies a potential avenue of evidence for the prevention and early intervention of basal-like breast cancer by blocking the glutamine-lipid feedback loop.

4.
Bio Protoc ; 14(15): e5047, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39131191

RESUMO

The cellular thermal shift assay (CETSA) and isothermal dose-response fingerprint assay (ITDRF CETSA) have been introduced as powerful tools for investigating target engagement by measuring ligand-triggered thermodynamic stabilization of cellular target proteins. Yet, these techniques have rarely been used to evaluate the thermal stability of RNA-binding proteins (RBPs) when exposed to ligands. Here, we present an adjusted approach using CETSA and ITDRFCETSA to determine the interaction between enasidenib and RBM45. Our assay is sensitive and time-efficient and can potentially be adapted for studying the interactions of RBM45 protein with other potential candidates. Key features • This protocol builds upon the method developed by Molina et al. and extends its application to new protein classes, such as RBPs.

5.
Biomed Pharmacother ; 176: 116826, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38838507

RESUMO

BACKGROUND: Phosphatidylinositol-4-phosphate 5-kinase type 1 alpha (PIP5K1A) acts upstream of the Akt regulatory pathway and is abnormally expressed in many types of malignancies. However, the role and mechanism of PIP5K1A in colorectal cancer (CRC) have not yet been reported. In this study, we aimed to determine the association between PIP5K1A and progression of CRC and assess the efficacy and mechanism by which rupatadine targets PIP5K1A. METHODS: Firstly, expression and function of PIP5K1A in CRC were investigated by human colon cancer tissue chip analysis and cell proliferation assay. Next, rupatadine was screened by computational screening and cytotoxicity assay and interactions between PIP5K1A and rupatadine assessed by kinase activity detection assay and bio-layer interferometry analysis. Next, rupatadine's anti-tumor effect was evaluated by in vivo and in vitro pharmacodynamic assays. Finally, rupatadine's anti-tumor mechanism was explored by quantitative real-time reverse-transcription polymerase chain reaction, western blot, and immunofluorescence. RESULTS: We found that PIP5K1A exerts tumor-promoting effects as a proto-oncogene in CRC and aberrant PIP5K1A expression correlates with CRC malignancy. We also found that rupatadine down-regulates cyclin-dependent kinase 2 and cyclin D1 protein expression by inhibiting the PIP5K1A/Akt/GSK-3ß pathway, induces cell cycle arrest, and inhibits CRC cell proliferation in vitro and in vivo. CONCLUSIONS: PIP5K1A is a potential drug target for treating CRC. Rupatadine, which targets PIP5K1A, could serve as a new option for treating CRC, its therapeutic mechanism being related to regulation of the Akt/GSK-3ß signaling pathway.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Ciproeptadina , Fosfotransferases (Aceptor do Grupo Álcool) , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Humanos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/patologia , Neoplasias Colorretais/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Transdução de Sinais/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Ciproeptadina/farmacologia , Ciproeptadina/análogos & derivados , Camundongos Nus , Linhagem Celular Tumoral , Camundongos Endogâmicos BALB C , Masculino , Proto-Oncogene Mas , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos , Antineoplásicos/farmacologia
6.
Cell Death Dis ; 15(5): 339, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750022

RESUMO

The therapeutic efficacy of adoptive T cell therapy is largely restricted by reduced viability and dysfunction of CD8+ T cells. Continuous antigen stimulation disrupts the expansion, effector function, and metabolic fitness of CD8+ T cells, leading to their differentiation into an exhausted state within the tumor microenvironment (TME). While the function of the cell cycle negative regulator p16 in senescent cells is well understood, its role in T cell exhaustion remains unclear. In this study, we demonstrated that TCR stimulation of CD8+ T cells rapidly upregulates p16 expression, with its levels positively correlating with TCR affinity. Chronic TCR stimulation further increased p16 expression, leading to CD8+ T cell apoptosis and exhaustion differentiation, without inducing DNA damage or cell senescence. Mechanistic investigations revealed that p16 downregulates mTOR, glycolysis, and oxidative phosphorylation (OXPHOS) associated gene expression, resulting in impaired mitochondrial fitness, reduced T cell viability, and diminished effector function. Furthermore, the deletion of p16 significantly enhances the persistence of CD8+ T cells within tumors and suppresses the terminal exhaustion of tumor-infiltrating T cells. Overall, our findings elucidate how increased p16 expression reshapes T cell intracellular metabolism, drives T cell apoptosis and exhaustion differentiation, and ultimately impairs T cell anti-tumor function.


Assuntos
Apoptose , Linfócitos T CD8-Positivos , Inibidor p16 de Quinase Dependente de Ciclina , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Animais , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Microambiente Tumoral/imunologia , Diferenciação Celular , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Glicólise , Exaustão das Células T
7.
Endocr Connect ; 13(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38722255

RESUMO

Invasive pituitary neuroendocrine tumors (PitNETs) are the most prevalent types of intracranial and neuroendocrine tumors. Their aggressive growth and difficulty in complete resection result in a high recurrence rate. Cystine transporter solute carrier family 7 member 11 (SLC7A11) is overexpressed in various cancers, which contributes to tumor growth, progression, and metastasis by promoting cystine uptake and glutathione biosynthesis. We identified SLC7A11 as an invasive biomarker based on three Gene Expression Omnibus cohorts. This study aimed to investigate the role of SLC7A11 in invasive PitNETs. Cell proliferation was assessed using CCK-8 and colony formation assays, while cell apoptosis was estimated with flow cytometry. Wound healing assays and transwell assays were utilized to evaluate migration and invasion ability. Our findings demonstrated that SLC7A11 was markedly upregulated in invasive PitNETs, and was associated with the invasiveness of PitNETs. Knockdown of SLC7A11 could largely suppress tumor cell proliferation, migration, and invasion, while inducing apoptosis. Furthermore, SLC7A11 depletion was implicated in regulating epithelial-mesenchymal transition and inactivating the PI3K/AKT signaling pathway. These insights suggest SLC7A11 as a potential therapeutic target for invasive PitNETs.

8.
J Cancer ; 15(8): 2318-2328, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38495493

RESUMO

Aim of the study: To investigate the anti-tumor effects of Lasiokaurin on breast cancer and explore its underlying molecular mechanism. Materials and methods: In this study, MTT assay, plate colony formation assays, soft agar assay, and EdU assay were employed to evaluate the anti-proliferation effects of LAS. Apoptosis and cell cycle distribution were detected by flow cytometry. The molecular mechanism was predicted by performing RNA sequencing and verified by using immunoblotting assays. Breast cancer organiods derived from patient-derived xenografts model and MDA-MB-231 xenograft mouse model were established to assess the effect of LAS. Results: Our study showed that LAS treatment significantly suppressed cell viability of 5 breast cancer cell lines, with the IC50 value of approximately 1-5 µM. LAS also inhibitied the clonogenic ability and DNA synthesis of breast cancer cells, Moreover, LAS induced apoptosis and G2/M cell cycle arrest in SK-BR-3 and MDA-MB-231 cells. Notably, transcriptomic analysis predicted the mechanistic involvement of PLK1 in LAS-suppressed breast cancer progression. Our experiment data further verified that LAS reduced PLK1 mRNA and protein expression in breast cancer, accompanied by downregulating CDC25C and AKT phosphorylation. Ultimately, we confirmed that LAS inhibit breast cancer growth via inhibiting PLK1 pathway in vivo. Conclusions: Collectively, our findings revealed that LAS inhibits breast cancer progression via regulating PLK1 pathway, which provids scientific evidence for the use of traditional Chinese medicine in cancer therapy.

9.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399439

RESUMO

Background: Arnicolide C, which is isolated from Centipeda minima, has excellent antitumor effects. However, the potential impacts and related mechanisms of action of arnicolide C in breast cancer remain unknown. Methods: The viability of breast cancer cells was measured using MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and colony formation assays. For analysis of apoptosis and the cell cycle, flow cytometry was used. A molecular docking approach was used to explore the possible targets of arnicolide C. Western blot analysis was used to detect changes in the expression of 14-3-3θ and proteins in related pathways after arnicolide C treatment in breast cancer cells. The anti-breast cancer effect of arnicolide C in vivo was evaluated by establishing cell-derived xenograft (CDX) and patient-derived xenograft (PDX) models. Results: Arnicolide C inhibited proliferation, increased apoptosis, and induced G1 arrest. In particular, molecular docking analysis indicated that arnicolide C binds to 14-3-3θ. Arnicolide C reduced 14-3-3θ expression and inhibited its downstream signaling pathways linked to cell proliferation. Similar results were obtained in the CDX and PDX models. Conclusion: Arnicolide C can have an anti-breast cancer effect both in vitro and in vivo and can induce cell cycle arrest and increase apoptosis in vitro. The molecular mechanism may be related to the effect of arnicolide C on the expression level of 14-3-3θ. However, the specific mechanism through which arnicolide C affects 14-3-3θ protein expression still needs to be determined.

10.
Eur J Pharmacol ; 961: 176157, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37939992

RESUMO

Pancreatic cancer is one of the most lethal cancer types with 5-year survival rate of ∼10.8%. Various KRAS mutations exist in ∼85% pancreatic cancer cell lines. Mutated KRAS is a major cause that leads cancer cell proliferation. Chemotherapy is still the major treatment for pancreatic cancer. Alternatively, repositioning old drug to inhibit mutated KRAS may be a cost-effective way for pancreatic cancer treatment. In this study, we choose mutated KRAS (G12D) as a target. Based on mutated KRAS GTP binding domain (hydrolyze GTP to GDP), we perform virtual screening on FDA-approved drugs. Montelukast shows strong binding affinity to mutated KRAS as well as interfering both GTP and GDP binding to mutated KRAS. Furthermore, Montelukast shows very strong anti-proliferation effect on mutated KRAS pancreatic cancer cells both in vitro and in vivo. Our results support repositioning of Montelukast as single agent for pancreatic cancer treatment.


Assuntos
Neoplasias Pancreáticas , Proteínas Proto-Oncogênicas p21(ras) , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Reposicionamento de Medicamentos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Mutação , Proliferação de Células , Guanosina Trifosfato/uso terapêutico
11.
Cancers (Basel) ; 15(20)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37894450

RESUMO

BACKGROUND: The microtubule protein inhibitor C118P shows excellent anti-breast cancer effects. However, the potential targets and mechanisms of C118P in breast cancer remain unknown. METHODS: Real-time cellular analysis (RTCA) was used to detect cell viability. Apoptosis and the cell cycle were detected by flow cytometry. Computer docking simulations, surface plasmon resonance (SPR) technology, and microscale thermophoresis (MST) were conducted to study the interaction between C118P and alanine-serine-cysteine transporter 2 (ASCT2). Seahorse XF technology was used to measure the basal oxygen consumption rate (OCR). The effect of C118P in the adipose microenvironment was explored using a co-culture model of adipocytes and breast cancer cells and mouse cytokine chip. RESULTS: C118P inhibited proliferation, potentiated apoptosis, and induced G2/M cell cycle arrest in breast cancer cells. Notably, ASCT2 was validated as a C118P target through reverse docking, SPR, and MST. C118P suppressed glutamine metabolism and mediated autophagy via ASCT2. Similar results were obtained in the adipocyte-breast cancer microenvironment. Adipose-derived interleukin-6 (IL-6) promoted the proliferation of breast cancer cells by enhancing glutamine metabolism via ASCT2. C118P inhibited the upregulation of ASCT2 by inhibiting the effect of IL-6 in co-cultures. CONCLUSION: C118P exerts an antitumour effect against breast cancer via the glutamine transporter ASCT2.

12.
Oncogene ; 42(42): 3127-3141, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37658192

RESUMO

Targeting metabolic remodeling represents a potentially promising strategy for hepatocellular carcinoma (HCC) therapy. In-depth understanding on the regulation of the glutamine transporter alanine-serine-cysteine transporter 2 (ASCT2) contributes to the development of novel promising therapeutics. As a developmentally regulated RNA binding protein, RBM45 is capable to shuttle between nucleus and cytoplasm, and directly interacts with proteins. By bioinformatics analysis, we screened out that RBM45 was elevated in the HCC patient specimens and positively correlated with poor prognosis. RBM45 promoted cell proliferation, boosted xenograft tumorigenicity and accelerated HCC progression. Using untargeted metabolomics, it was found that RBM45 interfered with glutamine metabolism. Further results demonstrated that RBM45 positively associated with ASCT2 in human and mouse specimens. Moreover, RBM45 enhanced ASCT2 protein stability by counteracting autophagy-independent lysosomal degradation. Significantly, wild-type ASCT2, instead of phospho-defective mutants, rescued siRBM45-suppressed HCC cell proliferation. Using molecular docking approaches, we found AG-221, a mutant isocitrate dehydrogenase 2 (mIDH2) inhibitor for acute myeloid leukemia therapy, pharmacologically perturbed RBM45-ASCT2 interaction, decreased ASCT2 stability and suppressed HCC progression. These findings provide evidence that RBM45 plays a crucial role in HCC progression via interacting with and counteracting the degradation of ASCT2. Our findings suggest a novel alternative structural sites for the design of ASCT2 inhibitors and the agents interfering with RBM45-ASCT2 interaction may be a potential direction for HCC drug development.

13.
Biochem Biophys Res Commun ; 673: 96-105, 2023 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-37364391

RESUMO

Hepatocellular carcinoma (HCC) represents one of the primary liver malignancies with poor prognosis. RHNO1, which implicated in the ATR-CHK1 signaling pathway thus functions in the DNA replication stress response. However, the role and molecular mechanisms of RHNO1 in HCC remain largely elusive. Here, we imply that RHNO1 is elevated in HCC tumor tissues and that high expression of RHNO1 predicts poor prognosis of HCC patients. Moreover, RHNO1 mRNA, especially protein levels were significantly increased in most HCC cells. Knockdown of RHNO1 through small interfering RNAs (siRNAs) inhibited the proliferation and triggered cell apoptosis of HCC cells both in vitro and in vivo. Specifically, we find that RHNO1 deficiency confers apoptosis via mitochondrial-mediated pathway. Mechanistically, silencing of RHNO1 impeded HCC proliferation and induced apoptosis by inactivating the PI3K/Akt pathway. Overall, these findings unravel that RHNO1 functions as an oncogene in HCC, and involved in regulating mitochondrial apoptosis to promote HCC thus may serve as a therapeutic and diagnostic target for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Apoptose , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno
14.
Int J Mol Sci ; 24(5)2023 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-36902385

RESUMO

Abnormal energy metabolism is a characteristic of tumor cells, and mitochondria are important components of tumor metabolic reprogramming. Mitochondria have gradually received the attention of scientists due to their important functions, such as providing chemical energy, producing substrates for tumor anabolism, controlling REDOX and calcium homeostasis, participating in the regulation of transcription, and controlling cell death. Based on the concept of reprogramming mitochondrial metabolism, a range of drugs have been developed to target the mitochondria. In this review, we discuss the current progress in mitochondrial metabolic reprogramming and summarized the corresponding treatment options. Finally, we propose mitochondrial inner membrane transporters as new and feasible therapeutic targets.


Assuntos
Mitocôndrias , Neoplasias , Humanos , Mitocôndrias/metabolismo , Metabolismo Energético/fisiologia , Neoplasias/metabolismo , Membranas Mitocondriais/metabolismo , Oxirredução
15.
Acta Pharm Sin B ; 13(2): 662-677, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36873178

RESUMO

Alanine-serine-cysteine transporter 2 (ASCT2) is reported to participate in the progression of tumors and metabolic diseases. It is also considered to play a crucial role in the glutamate-glutamine shuttle of neuroglial network. However, it remains unclear the involvement of ASCT2 in neurological diseases such as Parkinson's disease (PD). In this study, we demonstrated that high expression of ASCT2 in the plasma samples of PD patients and the midbrain of MPTP mouse models is positively correlated with dyskinesia. We further illustrated that ASCT2 expressed in astrocytes rather than neurons significantly upregulated in response to either MPP+ or LPS/ATP challenge. Genetic ablation of astrocytic ASCT2 alleviated the neuroinflammation and rescued dopaminergic (DA) neuron damage in PD models in vitro and in vivo. Notably, the binding of ASCT2 to NLRP3 aggravates astrocytic inflammasome-triggered neuroinflammation. Then a panel of 2513 FDA-approved drugs were performed via virtual molecular screening based on the target ASCT2 and we succeed in getting the drug talniflumate. It is validated talniflumate impedes astrocytic inflammation and prevents degeneration of DA neurons in PD models. Collectively, these findings reveal the role of astrocytic ASCT2 in the pathogenesis of PD, broaden the therapeutic strategy and provide a promising candidate drug for PD treatment.

16.
Front Pharmacol ; 14: 1097277, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891274

RESUMO

Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer, and it usually occurs following chronic liver disease. Although some progress has been made in the treatment of HCC, the prognosis of patients with advanced HCC is not optimistic, mainly because of the inevitable development of drug resistance. Therefore, multi-target kinase inhibitors for the treatment of HCC, such as sorafenib, lenvatinib, cabozantinib, and regorafenib, produce small clinical benefits for patients with HCC. It is necessary to study the mechanism of kinase inhibitor resistance and explore possible solutions to overcome this resistance to improve clinical benefits. In this study, we reviewed the mechanisms of resistance to multi-target kinase inhibitors in HCC and discussed strategies that can be used to improve treatment outcomes.

17.
J Ethnopharmacol ; 304: 116077, 2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-36572327

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Baipuhuang Keli (BPH, constituted by Bai Tou Weng (Pulsatilla chinensis (Bunge) Regel), Pu Gong Ying (Taraxacum mongolicum Hand.-Mazz.), Huang Qin (Scutellaria baicalensis Georgi), Huang Bo (Phellodendron amurense Rupr.)) is a Chinese herbal formula with clearing heat and cooling blood, and removing toxin effects, which is suit for the case of breast cancer. AIM OF THE STUDY: Here, we aim to explore the effects of BPH on triple-negative breast cancer (TNBC) and its potential mechanisms. MATERIALS AND METHODS: In this study, cell viability assay, colony formation assay, soft agar assay, cell proliferation curve assay, and EdU assay were employed to determine the anti-proliferation effect induced by BPH. Cell cycle distribution was detected by flow cytometry. DNA damage in cells treated with BPH was indicated by comet assay, immunofluorescence, and Western Blot. Both the 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model were used to assess in vivo effect of BPH (312.5, and 625 mg/kg). The protein expression levels of the DNA damage response (DDR) pathway and the MAPK/ERK pathway were detected by Western Blot. RESULTS: Our results indicated that TNBC cells were more sensitive to BPH than mammary epithelial cells. Cell proliferation of TNBC cells was significantly inhibited by BPH in a dose-dependent manner. Moreover, BPH induced DNA damage in TNBC cells in a concentration and time-dependent manner. DDR of TNBC cells was inhibited by BPH. MAPK/ERK pathway was inhibited in cells treated with BPH, and DNA damage can be reversed while EGF was added to activate MAPK/ERK pathway. The 4T1 orthotopic tumor model and the MDA-MB-231 subcutaneous tumor model further confirmed that BPH inhibited TNBC proliferation via inhibition of DDR and MAPK/ERK pathway in vivo. CONCLUSIONS: Collectively, we proved that BPH is a potential anticancer Chinese herbal formula for TNBC in the manner of in vitro and in vivo experiments.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Dano ao DNA , Sistema de Sinalização das MAP Quinases , Medicina Tradicional Chinesa , Neoplasias de Mama Triplo Negativas/patologia , Feminino
18.
Cell Death Differ ; 30(3): 702-715, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36220888

RESUMO

Although the Hedgehog (Hh) pathway plays an evolutionarily conserved role from Drosophila to mammals, some divergences also exist. Loss of Sufu, an important component of the Hh pathway, does not lead to an obvious developmental defect in Drosophila. However, in mammals, loss of SUFU results in serious disorder, even various cancers. This divergence suggests that SUFU plays additional roles in mammalian cells, besides regulating the Hh pathway. Here, we identify that the transcription factor ZNF281 is a novel binding partner of SUFU. Intriguingly, the Drosophila genome does not encode any homologs of ZNF281. SUFU is able to suppress ZNF281-induced tumor cell migration and DNA damage repair by inhibiting ZNF281 activity. Mechanistically, SUFU binds ZNF281 to mask the nuclear localization signal of ZNF281, culminating in ZNF281 cytoplasmic retention. In addition, SUFU also hampers the interactions between ZNF281 and promoters of target genes. Finally, we show that SUFU is able to inhibit ZNF281-induced tumor cell migration using an in vivo model. Taken together, these results uncover a Hh-independent mechanism of SUFU exerting the anti-tumor role, in which SUFU suppresses tumor cell migration through antagonizing ZNF281. Therefore, this study provides a possible explanation for the functional divergence of SUFU in mammals and Drosophila.


Assuntos
Neoplasias , Fatores de Transcrição , Animais , Fatores de Transcrição/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Hedgehog/metabolismo , Transdução de Sinais/fisiologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Drosophila/metabolismo , Movimento Celular , Mamíferos/metabolismo
19.
J Dermatol Sci ; 108(2): 58-67, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36424293

RESUMO

BACKGROUND: The incidence of melanoma rapidly increased in the past decades, and the clinical treatment of melanoma met huge challenges because of tumor heterogeneity and drug resistance. C118P, a novel tubulin polymerization inhibitor, exhibited strong anticancer effects in many tumors. However, there was no data regarding the potential effects of C118P in melanoma cells. OBJECTIVE: To investigate of the efficacy and potential target of C118P in melanoma cells. METHODS: Human melanoma cells were treated with C118P, followed by assessments of proliferation, apoptosis and cell cycle distribution. Subsequently, RNA sequencing was performed to further identify the drug targets of C118P in melanoma cells. GO analysis and protein-protein interaction networks analysis were used to screen the potential targets, and verified by a series of assays. Finally, the anti-growth activity of C118P was evaluated in A375-xenografted nude mice, and the expression of BUB1B (BUB1 mitotic checkpoint serine/threonine kinase B), Ki67 and Tunel were determined. RESULTS: We found that C118P concentration-dependently inhibited proliferation of melanoma cells. Moreover, C118P simultaneously triggered dramatic G2/M arrest and apoptosis via independent mechanisms in melanoma cells in vitro. C118P exerted anti-melanoma effects by inducing potent G2/M arrest, which was mechanistically related to downregulation of the expression of BUB1B. Importantly, C118P inhibited the tumor growth in A375-xenografted nude, and increased the staining of Ki-67 and Tunel and suppressed the expression of BUB1B in melanoma tissues, which was consistent with in vitro study. CONCLUSION: C118P might provide a novel strategy for the clinical treatment of melanoma by inhibition of BUB1B.


Assuntos
Apoptose , Melanoma , Camundongos , Animais , Humanos , Camundongos Nus , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Linhagem Celular Tumoral , Melanoma/patologia , Proteínas Serina-Treonina Quinases , Proliferação de Células , Proteínas de Ciclo Celular
20.
Basic Clin Pharmacol Toxicol ; 131(4): 241-250, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35771163

RESUMO

BACKGROUND: Glioma is one of the most fatal types of malignant tumours, the cause of which is mostly unknown. Orphan GPCRs (GPRs) have been previously implicated in tumour growth and metastasis. Therefore, these GPRs could prove to be alternative and promising therapeutic targets for cancer treatment. OBJECTIVE: The role of GPR160 in glioma has not yet been assessed. This study aims to explore the association of GPR160 with glioma progression and investigate its role in epithelial-to-mesenchymal transition (EMT) and metastasis. METHODS: Changes in protein expression were assessed using western blot analysis and immunofluorescent staining assays, while mRNA expression changes were evaluated using qRT-PCR. To detect the changes in progression and metastasis, MTT, EdU proliferation, wound healing, transwell migration, and flow cytometry assays were carried out in vitro. An epithelial to mesenchymal phenotypic analysis was performed to detect EMT. RESULTS: We demonstrated that knockdown of GPR160 inhibited proliferation, colony formation, and cell viability and promoted apoptosis. Pro-apoptotic biomarkers were upregulated, while anti-apoptotic biomarkers were downregulated. Cell lines with GPR160 knockdown (GPR160 KD) showed a slowed migration rate and decreased invasion ability. EMT mesenchymal biomarkers were downregulated in GPR160 KD cell lines, while epithelial biomarkers were upregulated. CONCLUSION: This study provides evidence that GPR160 is a potential therapeutic target in glioma for the first time. These findings can be used to discover in detail the molecular mechanism and pathways through which GPR160 promotes glioma progression.


Assuntos
Transição Epitelial-Mesenquimal , Glioma , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/genética , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Humanos , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA