Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143215

RESUMO

Coronaviruses remodel the intracellular host membranes during replication, forming double-membrane vesicles (DMVs) to accommodate viral RNA synthesis and modifications1,2. SARS-CoV-2 non-structural protein 3 (nsp3) and nsp4 are the minimal viral components required to induce DMV formation and to form a double-membrane-spanning pore, essential for the transport of newly synthesized viral RNAs3-5. The mechanism of DMV pore complex formation remains unknown. Here we describe the molecular architecture of the SARS-CoV-2 nsp3-nsp4 pore complex, as resolved by cryogenic electron tomography and subtomogram averaging in isolated DMVs. The structures uncover an unexpected stoichiometry and topology of the nsp3-nsp4 pore complex comprising 12 copies each of nsp3 and nsp4, organized in 4 concentric stacking hexamer rings, mimicking a miniature nuclear pore complex. The transmembrane domains are interdigitated to create a high local curvature at the double-membrane junction, coupling double-membrane reorganization with pore formation. The ectodomains form extensive contacts in a pseudo-12-fold symmetry, belting the pore complex from the intermembrane space. A central positively charged ring of arginine residues coordinates the putative RNA translocation, essential for virus replication. Our work establishes a framework for understanding DMV pore formation and RNA translocation, providing a structural basis for the development of new antiviral strategies to combat coronavirus infection.

2.
Chem Sci ; 15(26): 10065-10072, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38966375

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 resulted in a global public health crisis. In addition to vaccines, the development of effective therapy is highly desirable. Targeting a protein that plays a critical role in virus replication may allow pan-spectrum antiviral drugs to be developed. Among SARS-CoV-2 proteins, helicase (i.e., non-structural protein 13) is considered as a promising antiviral drug target due to its highly conserved sequence, unique structure and function. Herein, we demonstrate SARS-CoV-2 helicase as a target of bismuth-based antivirals in virus-infected mammalian cells by a metal-tagged antibody approach. To search for more potent bismuth-based antivirals, we further screened a panel of bismuth compounds towards inhibition of ATPase and DNA unwinding activity of nsp13 and identified a highly potent bismuth compound Bi(5-aminotropolonate)3, namely Bi(Tro-NH2)3 with an IC50 of 30 nM for ATPase. We show that bismuth-based compounds inhibited nsp13 unwinding activity via disrupting the binding of ATP and the DNA substrate to viral helicase. Binding of Bi(iii) to nsp13 also abolished the interaction between nsp12 and nsp13 as evidenced by immunofluorescence and co-immunoprecipitation assays. Finally, we validate our in vitro data in SARS-CoV-2 infected mammalian cells. Notably, Bi(6-TG)3 exhibited an EC50 of 1.18 ± 0.09 µM with a selective index of 847 in VeroE6-TMPRSS2 infected cells. This study highlights the important role of helicase for the development of more effective antiviral drugs to combat SARS-CoV-2 infection.

3.
bioRxiv ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39026801

RESUMO

Defining the subset of cellular factors governing SARS-CoV-2 replication can provide critical insights into viral pathogenesis and identify targets for host-directed antiviral therapies. While a number of genetic screens have previously reported SARS-CoV-2 host dependency factors, these approaches relied on utilizing pooled genome-scale CRISPR libraries, which are biased towards the discovery of host proteins impacting early stages of viral replication. To identify host factors involved throughout the SARS-CoV-2 infectious cycle, we conducted an arrayed genome-scale siRNA screen. Resulting data were integrated with published datasets to reveal pathways supported by orthogonal datasets, including transcriptional regulation, epigenetic modifications, and MAPK signalling. The identified proviral host factors were mapped into the SARS-CoV-2 infectious cycle, including 27 proteins that were determined to impact assembly and release. Additionally, a subset of proteins were tested across other coronaviruses revealing 17 potential pan-coronavirus targets. Further studies illuminated a role for the heparan sulfate proteoglycan perlecan in SARS-CoV-2 viral entry, and found that inhibition of the non-canonical NF-kB pathway through targeting of BIRC2 restricts SARS-CoV-2 replication both in vitro and in vivo. These studies provide critical insight into the landscape of virus-host interactions driving SARS-CoV-2 replication as well as valuable targets for host-directed antivirals.

5.
iScience ; 27(5): 109706, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38660398

RESUMO

SARS-CoV-2 Omicron variant has evolved into sublineages. Here, we compared the neutralization susceptibility and viral fitness of EG.5.1 and XBB.1.9.1. Serum neutralization antibody titer against EG.5.1 was 1.71-fold lower than that for XBB.1.9.1. However, there was no significant difference in virus replication between EG.5.1 and XBB.1.9.1 in human nasal organoids and TMPRSS2/ACE2 over-expressing A549 cells. No significant difference was observed in competitive fitness and cytokine/chemokine response between EG.5.1 and XBB.1.9.1. Both EG.5.1 and XBB.1.9.1 replicated more robustly in the nasal organoid from a younger adult than that from an older adult. Our findings suggest that enhanced immune escape contributes to the dominance of EG.5.1 over earlier sublineages. The combination of population serum susceptibility testing and viral fitness evaluation with nasal organoids may hold promise in risk assessment of upcoming variants. Utilization of serum specimens and nasal organoid derived from older adults provides a targeted risk assessment for this vulnerable population.

6.
Sci Rep ; 14(1): 8781, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627497

RESUMO

SARS-CoV-2 provokes devastating tissue damage by cytokine release syndrome and leads to multi-organ failure. Modeling the process of immune cell activation and subsequent tissue damage is a significant task. Organoids from human tissues advanced our understanding of SARS-CoV-2 infection mechanisms though, they are missing crucial components: immune cells and endothelial cells. This study aims to generate organoids with these components. We established vascular immune organoids from human pluripotent stem cells and examined the effect of SARS-CoV-2 infection. We demonstrated that infections activated inflammatory macrophages. Notably, the upregulation of interferon signaling supports macrophages' role in cytokine release syndrome. We propose vascular immune organoids are a useful platform to model and discover factors that ameliorate SARS-CoV-2-mediated cytokine release syndrome.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/fisiologia , Células Endoteliais , Síndrome da Liberação de Citocina , Macrófagos , Organoides
7.
Clin Immunol ; 263: 110205, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38575044

RESUMO

Increasing clinical data show that the imbalance of host metallome is closely associated with different kinds of disease, however, the intrinsic mechanisms of action of metals in immunity and pathogenesis of disease remain largely undefined. There is lack of multiplexed profiling system to integrate the metalloproteome-immunoproteome information at systemic level for exploring the roles of metals in immunity and disease pathogenesis. In this study, we build up a metal-coding assisted multiplexed proteome assay platform for serum metalloproteomic and immunoproteomic profiling. By taking COVID-19 as a showcase, we unbiasedly uncovered the most evident modulation of iron-related proteins, i.e., Ft and Tf, in serum of severe COVID-19 patients, and the value of Ft/Tf could work as a robust biomarker for COVID-19 severity stratification, which overtakes the well-established clinical risk factors (cytokines). We further uncovered a tight association of transferrin with inflammation mediator IL-10 in COVID-19 patients, which was proved to be mainly governed by the monocyte/macrophage of liver, shedding light on new pathophysiological and immune regulatory mechanisms of COVID-19 disease. We finally validated the beneficial effects of iron chelators as anti-viral agents in SARS-CoV-2-infected K18-hACE2 mice through modulation of iron dyshomeostasis and alleviating inflammation response. Our findings highlight the critical role of liver-mediated iron dysregulation in COVID-19 disease severity, providing solid evidence on the involvement of iron-related proteins in COVID-19 pathophysiology and immunity.


Assuntos
COVID-19 , Ferro , Proteoma , SARS-CoV-2 , COVID-19/imunologia , Humanos , Animais , SARS-CoV-2/imunologia , Camundongos , Ferro/metabolismo , Proteômica/métodos , Transferrina/metabolismo , Metaloproteínas/imunologia , Metaloproteínas/metabolismo , Masculino , Feminino , Biomarcadores/sangue , Biomarcadores/metabolismo , Quelantes de Ferro/uso terapêutico , Quelantes de Ferro/farmacologia , Interleucina-10/imunologia , Interleucina-10/metabolismo , Pessoa de Meia-Idade
8.
Nat Rev Microbiol ; 22(7): 391-407, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38622352

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused substantial morbidity and mortality, and serious social and economic disruptions worldwide. Unvaccinated or incompletely vaccinated older individuals with underlying diseases are especially prone to severe disease. In patients with non-fatal disease, long COVID affecting multiple body systems may persist for months. Unlike SARS-CoV and Middle East respiratory syndrome coronavirus, which have either been mitigated or remained geographically restricted, SARS-CoV-2 has disseminated globally and is likely to continue circulating in humans with possible emergence of new variants that may render vaccines less effective. Thus, safe, effective and readily available COVID-19 therapeutics are urgently needed. In this Review, we summarize the major drug discovery approaches, preclinical antiviral evaluation models, representative virus-targeting and host-targeting therapeutic options, and key therapeutics currently in clinical use for COVID-19. Preparedness against future coronavirus pandemics relies not only on effective vaccines but also on broad-spectrum antivirals targeting conserved viral components or universal host targets, and new therapeutics that can precisely modulate the immune response during infection.


Assuntos
Antivirais , Tratamento Farmacológico da COVID-19 , COVID-19 , Descoberta de Drogas , SARS-CoV-2 , Humanos , Antivirais/uso terapêutico , Antivirais/farmacologia , SARS-CoV-2/efeitos dos fármacos , COVID-19/virologia , Animais
9.
Nat Commun ; 15(1): 2144, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459021

RESUMO

Host survival depends on the elimination of virus and mitigation of tissue damage. Herein, we report the modulation of D-mannose flux rewires the virus-triggered immunometabolic response cascade and reduces tissue damage. Safe and inexpensive D-mannose can compete with glucose for the same transporter and hexokinase. Such competitions suppress glycolysis, reduce mitochondrial reactive-oxygen-species and succinate-mediated hypoxia-inducible factor-1α, and thus reduce virus-induced proinflammatory cytokine production. The combinatorial treatment by D-mannose and antiviral monotherapy exhibits in vivo synergy despite delayed antiviral treatment in mouse model of virus infections. Phosphomannose isomerase (PMI) knockout cells are viable, whereas addition of D-mannose to the PMI knockout cells blocks cell proliferation, indicating that PMI activity determines the beneficial effect of D-mannose. PMI inhibition suppress a panel of virus replication via affecting host and viral surface protein glycosylation. However, D-mannose does not suppress PMI activity or virus fitness. Taken together, PMI-centered therapeutic strategy clears virus infection while D-mannose treatment reprograms glycolysis for control of collateral damage.


Assuntos
Manose-6-Fosfato Isomerase , Manose , Animais , Camundongos , Manose-6-Fosfato Isomerase/metabolismo , Glicosilação , Manose/metabolismo , Glucose/metabolismo , Antivirais/farmacologia
10.
Cell Rep Med ; 5(2): 101418, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38340726

RESUMO

The continual emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) poses a major challenge to vaccines and antiviral therapeutics due to their extensive evasion of immunity. Aiming to develop potent and broad-spectrum anticoronavirus inhibitors, we generated A1-(GGGGS)7-HR2m (A1L35HR2m) by introducing an angiotensin-converting enzyme 2 (ACE2)-derived peptide A1 to the N terminus of the viral HR2-derived peptide HR2m through a long flexible linker, which showed significantly improved antiviral activity. Further cholesterol (Chol) modification at the C terminus of A1L35HR2m greatly enhanced the inhibitory activities against SARS-CoV-2, SARS-CoV-2 VOCs, SARS-CoV, and Middle East respiratory syndrome coronavirus (MERS-CoV) pseudoviruses, with IC50 values ranging from 0.16 to 5.53 nM. A1L35HR2m-Chol also potently inhibits spike-protein-mediated cell-cell fusion and the replication of authentic Omicron BA.2.12.1, BA.5, and EG.5.1. Importantly, A1L35HR2m-Chol distributed widely in respiratory tract tissue and had a long half-life (>10 h) in vivo. Intranasal administration of A1L35HR2m-Chol to K18-hACE2 transgenic mice potently inhibited Omicron BA.5 and EG.5.1 infection both prophylactically and therapeutically.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Camundongos , Administração Intranasal , Camundongos Transgênicos , Peptídeos/farmacologia , SARS-CoV-2/genética , Antivirais/farmacologia , Antivirais/uso terapêutico
11.
Virus Res ; 342: 199341, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38403000

RESUMO

Genome-wide association study (GWAS) analysis has exposed that genetic factors play important roles in COVID-19. Whereas a deeper understanding of the underlying mechanism of COVID-19 was hindered by the lack of expression of quantitative trait loci (eQTL) data specific for disease. To this end, we identified COVID-19-specific cis-eQTLs by integrating nucleotide sequence variations and RNA-Seq data from COVID-19 samples. These identified eQTLs have different regulatory effect on genes between patients and controls, indicating that SARS-CoV-2 infection may cause alterations in the human body's internal environment. Individuals with the TT genotype in the rs1128320 region seemed more susceptible to SARS-CoV-2 infection and developed into severe COVID-19 due to the abnormal expression of IFITM1. We subsequently discovered potential causal genes, of the result, a total of 48 genes from six tissues were identified. siRNA-mediated depletion assays in SARS-CoV-2 infection proved that 14 causal genes were directly associated with SARS-CoV-2 infection. These results enriched existing research on COVID-19 causal genes and provided a new sight in the mechanism exploration for COVID-19.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , Humanos , SARS-CoV-2/genética , RNA Interferente Pequeno , RNA-Seq
12.
J Med Virol ; 96(2): e29472, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38373201

RESUMO

Interferons (IFNs) are critical for immune defense against pathogens. While type-I and -III IFNs have been reported to inhibit SARS-CoV-2 replication, the antiviral effect and mechanism of type-II IFN against SARS-CoV-2 remain largely unknown. Here, we evaluate the antiviral activity of type-II IFN (IFNγ) using human lung epithelial cells (Calu3) and ex vivo human lung tissues. In this study, we found that IFNγ suppresses SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Moreover, IFNγ treatment does not significantly modulate the expression of SARS-CoV-2 entry-related factors and induces a similar level of pro-inflammatory response in human lung tissues when compared with IFNß treatment. Mechanistically, we show that overexpression of indoleamine 2,3-dioxygenase 1 (IDO1), which is most profoundly induced by IFNγ, substantially restricts the replication of ancestral SARS-CoV-2 and the Alpha and Delta variants. Meanwhile, loss-of-function study reveals that IDO1 knockdown restores SARS-CoV-2 replication restricted by IFNγ in Calu3 cells. We further found that the treatment of l-tryptophan, a substrate of IDO1, partially rescues the IFNγ-mediated inhibitory effect on SARS-CoV-2 replication in both Calu3 cells and ex vivo human lung tissues. Collectively, these results suggest that type-II IFN potently inhibits SARS-CoV-2 replication through IDO1-mediated antiviral response.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Replicação Viral , Pulmão , Interferons , Células Epiteliais , Antivirais/farmacologia
14.
Microbes Infect ; : 105304, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38278475

RESUMO

As the high pathogenic species of Filoviridae virus family, Orthoebolavirus zairense (EBOV) shows frequent outbreaks in human in recently years since its first emerging in 1976 in Democratic Republic of the Congo (COD), bringing ongoing risks and burden on public health safety. Here, the phylogenetic relationship among major outbreaks was analyzed. The results showed that EBOV isolates could be divided into four lineages according to spatial and temporal epidemics. Then, the positive selection sites (PSSs) were detected on all proteins of the EBOV, exhibiting lineage characteristic. Particularly, sites in GP and VP24 were identified to be significantly under positive selection, and partial of which were maintained in the latest isolates in 2021. GP and L were found to have high variability between lineages. Substitutions including F443L and F443S in GP, as well as F1610L and I1951V in L could be characteristic of the two large outbreaks in COD (2018) and West Africa (2014), respectively. Further, substitutions of significant PSSs in VP24 and L proteins were visualized for analysis of structural changes, which may affect EBOV pathogenesis. In summary, our results gains insights in genetic characteristic and adaptive evolution of EBOV, which could facilitate gene functional research against EBOV.

15.
EBioMedicine ; 99: 104916, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38101297

RESUMO

BACKGROUND: Earlier Omicron subvariants including BA.1, BA.2, and BA.5 emerged in waves, with a subvariant replacing the previous one every few months. More recently, the post-BA.2/5 subvariants have acquired convergent substitutions in spike that facilitated their escape from humoral immunity and gained ACE2 binding capacity. However, the intrinsic pathogenicity and replication fitness of the evaluated post-BA.2/5 subvariants are not fully understood. METHODS: We systemically investigated the replication fitness and intrinsic pathogenicity of representative post-BA.2/5 subvariants (BL.1, BQ.1, BQ.1.1, XBB.1, CH.1.1, and XBB.1.5) in weanling (3-4 weeks), adult (8-10 weeks), and aged (10-12 months) mice. In addition, to better model Omicron replication in the human nasal epithelium, we further investigated the replication capacity of the post-BA.2/5 subvariants in human primary nasal epithelial cells. FINDINGS: We found that the evaluated post-BA.2/5 subvariants are consistently attenuated in mouse lungs but not in nasal turbinates when compared with their ancestral subvariants BA.2/5. Further investigations in primary human nasal epithelial cells revealed a gained replication fitness of XBB.1 and XBB.1.5 when compared to BA.2 and BA.5.2. INTERPRETATION: Our study revealed that the post-BA.2/5 subvariants are attenuated in lungs while increased in replication fitness in the nasal epithelium, indicating rapid adaptation of the circulating Omicron subvariants in the human populations. FUNDING: The full list of funding can be found at the Acknowledgements section.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , Humanos , Animais , Camundongos , Virulência , Células Epiteliais , Mucosa Nasal
16.
Imeta ; 2(3): e130, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38867938

RESUMO

The tumor immune microenvironment (TIME) is closely associated with tumor formation, particularly linked to the human papillomavirus (HPV), and regulates tumor initiation, proliferation, infiltration, and metastasis. With the rise of immunotherapy, an increasing amount of sample data used for TIME exploration is available in databases. However, no currently available web tool enables a comprehensive exploration of the TIME of HPV-associated cancers by leveraging these data. We have developed a web tool called HPV-associated Tumor Immune MicroEnvironment ExploreR (HPVTIMER), which provides a comprehensive analysis platform that integrates over 10,000 genes and 2290 tumor samples from 65 transcriptome data sets across 8 cancer types sourced from the Gene Expression Omnibus (GEO) database. The tool features four built-in analysis modules, namely, the differential expression analysis module, correlation analysis module, immune infiltration analysis module, and pathway analysis module. These modules enable users to perform systematic and vertical analyses. We used several analytical modules in HPVTIMER to briefly explore the role of CDKN2A in head and neck squamous cell carcinomas. We expect that HPVTIMER will help users explore the immune microenvironment of HPV-associated cancers and uncover potential immune regulatory mechanisms and immunotherapeutic targets. HPVTIMER is available at http://www.hpvtimer.com/.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA