Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 12(16): 4103-4116, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39012216

RESUMO

Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.


Assuntos
Técnicas Biossensoriais , Edição de Genes , Humanos , Imunoterapia , Animais , Biologia Sintética , Pró-Fármacos/química
2.
Bioact Mater ; 35: 150-166, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38318228

RESUMO

Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.

3.
Adv Sci (Weinh) ; 11(16): e2309295, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358998

RESUMO

Bacteria have distinctive properties that make them ideal for biomedical applications. They can self-propel, sense their surroundings, and be externally detected. Using bacteria as medical therapeutic agents or delivery platforms opens new possibilities for advanced diagnosis and therapies. Nano-drug delivery platforms have numerous advantages over traditional ones, such as high loading capacity, controlled drug release, and adaptable functionalities. Combining bacteria and nanotechnologies to create therapeutic agents or delivery platforms has gained increasing attention in recent years and shows promise for improved diagnosis and treatment of diseases. In this review, design principles of integrating nanoparticles with bacteria, bacteria-derived nano-sized vesicles, and their applications and future in advanced diagnosis and therapeutics are summarized.


Assuntos
Bactérias , Sistemas de Liberação de Medicamentos , Nanotecnologia , Humanos , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/uso terapêutico
4.
Arch Insect Biochem Physiol ; 113(4): e22022, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154128

RESUMO

The turnip aphid, Lipaphis erysimi Kaltenbach, inflicts heavy damage on cruciferous crops worldwide. In these insects, olfactory perception is crucial for mating, host location, and oviposition. Both odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) are responsible for the delivery of host odorants and pheromones during initial molecular interactions. In this study, antennal and body transcriptomes of L. erysimi were generated through the deep sequencing of RNA libraries. A dataset of 11 LeryOBP and four LeryCSP transcripts was identified among assembled unigenes and subjected to sequence analysis. Phylogenetic analysis found a one-to-one orthologous relationship between LeryOBP/LeryCSP and its corresponding homologs from other aphid species. Further quantitative real-time PCR analyses across developmental stages and tissues showed that five LeryOBP genes (i.e., LeryGOBP, LeryOBP6, LeryOBP7, LeryOBP9, and LeryOBP13) and LeryCSP10 were specifically or significantly elevated in the antennae compared with other tissues. Moreover, two transcripts (i.e., LeryGOBP and LeryOBP6) exhibited remarkably higher expression levels in alate aphids, implying their potentially functional role in the perception of new host plant locations. These results present the identification and expression of OBP/CSP genes in L. erysimi, providing valuable insights into their putative role in olfactory signal transduction.


Assuntos
Afídeos , Brassica napus , Receptores Odorantes , Feminino , Animais , Afídeos/genética , Afídeos/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Filogenia , Transcriptoma , Receptores Odorantes/genética , Receptores Odorantes/metabolismo , Proteínas de Insetos/metabolismo , Antenas de Artrópodes/metabolismo , Perfilação da Expressão Gênica
5.
Eur J Pharmacol ; 908: 174366, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34314706

RESUMO

Carboplatin treatment is associated with potential benefits in practice in the neoadjuvant chemotherapy for Triple-negative breast cancer (TNBC) patients. In order to enhance its anti-tumor effects, new concepts for successful combination therapy are needed. Here, we interestingly found that the combination treatment of carboplatin with the Chk1 inhibitor AZD7762 synergistically inhibits TNBC cell growth in multiple TNBC cell lines in vitro. Mechanistically, we proved that prolonged carboplatin-treated induce cell mitotic arrest, and cells would fail to initiate the G2-M transition following the inhibition of the Chk1 pathway, leading to accumulation of DNA lesions. With this drug-in-combination treatment, the incidence of mitotic catastrophes including spindle multipolarity and cytokinesis failure is remarkably enhanced, which subsequently drives tumor cells multinucleation, polyploidization and apoptosis. Thus, our findings not only propose Chk1 as a therapeutic target for combination therapy with DNA-damaging agents such as carboplatin in TNBC, but also highlight that the induction of mitotic catastrophe could be considered as an alternative strategy for TNBC therapy.


Assuntos
Neoplasias de Mama Triplo Negativas , Carboplatina , Quinase 1 do Ponto de Checagem , Humanos , Terapia Neoadjuvante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA