Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
2.
Sci Rep ; 14(1): 14317, 2024 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-38906954

RESUMO

To improve the understanding of potential pathological mechanisms of macular edema (ME), we try to discover biomarker candidates related to ME caused by diabetic retinopathy (DR) and retinal vein occlusion (RVO) in spectral-domain optical coherence tomography images by means of deep learning (DL). 32 eyes of 26 subjects with non-proliferative DR (NPDR), 77 eyes of 61 subjects with proliferative DR (PDR), 120 eyes of 116 subjects with branch RVO (BRVO), and 17 eyes of 15 subjects with central RVO (CRVO) were collected. A DL model was implemented to guide biomarker candidate discovery. The disorganization of the retinal outer layers (DROL), i.e., the gray value of the retinal tissues between the external limiting membrane (ELM) and retinal pigment epithelium (RPE), the disrupted and obscured rate of the ELM, ellipsoid zone (EZ), and RPE, was measured. In addition, the occurrence, number, volume, and projected area of hyperreflective foci (HRF) were recorded. ELM, EZ, and RPE are more likely to be obscured in RVO group and HRFs are observed more frequently in DR group (all P ≤ 0.001). In conclusion, the features of DROL and HRF can be possible biomarkers related to ME caused by DR and RVO in OCT modality.


Assuntos
Biomarcadores , Retinopatia Diabética , Edema Macular , Oclusão da Veia Retiniana , Tomografia de Coerência Óptica , Humanos , Edema Macular/diagnóstico por imagem , Edema Macular/etiologia , Edema Macular/patologia , Tomografia de Coerência Óptica/métodos , Oclusão da Veia Retiniana/diagnóstico por imagem , Oclusão da Veia Retiniana/patologia , Oclusão da Veia Retiniana/complicações , Retinopatia Diabética/diagnóstico por imagem , Retinopatia Diabética/patologia , Feminino , Masculino , Pessoa de Meia-Idade , Idoso , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/diagnóstico por imagem , Aprendizado Profundo
3.
J Biomed Res ; : 1-12, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38808557

RESUMO

The retinal pigment epithelium (RPE) is fundamental to sustaining retinal homeostasis. RPE abnormality leads to visual defects and blindness, including age-related macular degeneration (AMD). Although breakthroughs have been made in the treatment of neovascular AMD, effective intervention for atrophic AMD is largely absent. The inadequate knowledge of RPE pathology is hindered by a lack of patient RPE datasets, especially at the single-cell resolution. In this study, we delved into a large-scale single-cell resource of AMD donors in which RPE cells were occupied in a substantial proportion. Bulk RNA-seq datasets of atrophic AMD were integrated to extract molecular characteristics of RPE in the pathogenesis of atrophic AMD. Both in vivo and in vitro models revealed that carboxypeptidase X, M14 family member 2 (CPXM2) was specifically expressed in the RPE cells of atrophic AMD, which might be induced by oxidative stress and involved in the epithelial-mesenchymal transition of RPE cells. Additionally, silencing of CPXM2 inhibited the mesenchymal phenotype of RPE cells in an oxidative stress cell model. Thus, our results demonstrate that CPXM2 plays a crucial role in regulating atrophic AMD and may serve as a potential therapeutic target for atrophic AMD.

4.
IEEE Trans Med Imaging ; PP2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587957

RESUMO

Accurate retinal layer segmentation on optical coherence tomography (OCT) images is hampered by the challenges of collecting OCT images with diverse pathological characterization and balanced distribution. Current generative models can produce high-realistic images and corresponding labels without quantitative limitations by fitting distributions of real collected data. Nevertheless, the diversity of their generated data is still limited due to the inherent imbalance of training data. To address these issues, we propose an image-label pair generation framework that generates diverse and balanced potential data from imbalanced real samples. Specifically, the framework first generates diverse layer masks, and then generates plausible OCT images corresponding to these layer masks using two customized diffusion probabilistic models respectively. To learn from imbalanced data and facilitate balanced generation, we introduce pathological-related conditions to guide the generation processes. To enhance the diversity of the generated image-label pairs, we propose a potential structure modeling technique that transfers the knowledge of diverse sub-structures from lowly- or non-pathological samples to highly pathological samples. We conducted extensive experiments on two public datasets for retinal layer segmentation. Firstly, our method generates OCT images with higher image quality and diversity compared to other generative methods. Furthermore, based on the extensive training with the generated OCT images, downstream retinal layer segmentation tasks demonstrate improved results. The code is publicly available at: https://github.com/nicetomeetu21/GenPSM.

5.
Nat Commun ; 15(1): 3588, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678013

RESUMO

Eye tracking techniques enable high-efficient, natural, and effortless human-machine interaction by detecting users' eye movements and decoding their attention and intentions. Here, a miniature, imperceptible, and biocompatible smart contact lens is proposed for in situ eye tracking and wireless eye-machine interaction. Employing the frequency encoding strategy, the chip-free and battery-free lens successes in detecting eye movement and closure. Using a time-sequential eye tracking algorithm, the lens has a great angular accuracy of <0.5°, which is even less than the vision range of central fovea. Multiple eye-machine interaction applications, such as eye-drawing, Gluttonous Snake game, web interaction, pan-tilt-zoom camera control, and robot vehicle control, are demonstrated on the eye movement model and in vivo rabbit. Furthermore, comprehensive biocompatibility tests are implemented, demonstrating low cytotoxicity and low eye irritation. Thus, the contact lens is expected to enrich approaches of eye tracking techniques and promote the development of human-machine interaction technology.


Assuntos
Algoritmos , Lentes de Contato , Movimentos Oculares , Tecnologia de Rastreamento Ocular , Movimentos Oculares/fisiologia , Animais , Humanos , Coelhos , Sistemas Homem-Máquina
6.
Int J Gen Med ; 17: 447-456, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333017

RESUMO

Silicone oil has emerged as the common option for intraocular tamponade during complicated retina vitrectomy. However, the postoperative elevation of intraocular pressure (IOP), influenced by numerous factors, remains a significant and frequently encountered complication that poses a potential threat to vision. Extensive research has been conducted to investigate the risk factors associated with elevated IOP following silicone oil tamponade, including silicone oil viscosity, preoperative high IOP, diabetes, and lens status. This comprehensive review aims to gather and summarize the current research findings regarding the risk factors contributing to IOP elevation following silicone oil tamponade, as well as the optimal management strategies for secondary glaucoma. The analysis includes the physicochemical properties of silicone oil, preoperative and intraoperative risk factors, and the effective management of secondary glaucoma. Enhancing our understanding of the primary factors associated with silicone oil-induced IOP elevation will facilitate the guidance of timely and appropriate interventions.

7.
Med Image Anal ; 93: 103092, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38325155

RESUMO

Optical coherence tomography angiography (OCTA) is a novel imaging modality that has been widely utilized in ophthalmology and neuroscience studies to observe retinal vessels and microvascular systems. However, publicly available OCTA datasets remain scarce. In this paper, we introduce the largest and most comprehensive OCTA dataset dubbed OCTA-500, which contains OCTA imaging under two fields of view (FOVs) from 500 subjects. The dataset provides rich images and annotations including two modalities (OCT/OCTA volumes), six types of projections, four types of text labels (age/gender/eye/disease) and seven types of segmentation labels (large vessel/capillary/artery/vein/2D FAZ/3D FAZ/retinal layers). Then, we propose a multi-object segmentation task called CAVF, which integrates capillary segmentation, artery segmentation, vein segmentation, and FAZ segmentation under a unified framework. In addition, we optimize the 3D-to-2D image projection network (IPN) to IPN-V2 to serve as one of the segmentation baselines. Experimental results demonstrate that IPN-V2 achieves an about 10% mIoU improvement over IPN on CAVF task. Finally, we further study the impact of several dataset characteristics: the training set size, the model input (OCT/OCTA, 3D volume/2D projection), the baseline networks, and the diseases. The dataset and code are publicly available at: https://ieee-dataport.org/open-access/octa-500.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Humanos , Retina/diagnóstico por imagem , Vasos Retinianos/diagnóstico por imagem
8.
Int J Biol Sci ; 20(3): 897-915, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250154

RESUMO

Ocular angiogenic diseases, such as proliferative diabetic retinopathy (PDR), are often characterized by pathological new vessels and fibrosis formation. Anti-vascular endothelial growth factor (VEGF) therapy, despite of its efficiency to inhibit new vessels, has limitations, including drug resistance and retinal fibrosis. Here, we identified that Gremlin1, a novel angiogenesis and fibrosis inducer, was secreted from Müller glial cells, and its expression increased in the vitreous fluid from patients with PDR. Mechanistically, Gremlin1 triggered angiogenesis by promoting endothelial-mesenchymal transition via the EGFR/RhoA/ROCK pathway. In addition, Gremlin1 activated microglia to present profibrotic and fibrogenic properties. Further, anti-Gremlin1 antibody inhibited ocular angiogenesis and microglia fibrosis in mouse models. Collectively, Gremlin1 could be a potential therapeutic target in the treatment of ocular angiogenic diseases.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Peptídeos e Proteínas de Sinalização Intercelular , Animais , Humanos , Camundongos , Transporte Biológico , Retinopatia Diabética/tratamento farmacológico , Modelos Animais de Doenças , Olho , Fibrose , Peptídeos e Proteínas de Sinalização Intercelular/genética
9.
EMBO Mol Med ; 16(2): 294-318, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38297099

RESUMO

Diabetic retinopathy (DR) is a leading cause of irreversible vision loss in working-age populations. Fat mass and obesity-associated protein (FTO) is an N6-methyladenosine (m6A) demethylase that demethylates RNAs involved in energy homeostasis, though its influence on DR is not well studied. Herein, we detected elevated FTO expression in vitreous fibrovascular membranes of patients with proliferative DR. FTO promoted cell cycle progression and tip cell formation of endothelial cells (ECs) to facilitate angiogenesis in vitro, in mice, and in zebrafish. FTO also regulated EC-pericyte crosstalk to trigger diabetic microvascular leakage, and mediated EC-microglia interactions to induce retinal inflammation and neurodegeneration in vivo and in vitro. Mechanistically, FTO affected EC features via modulating CDK2 mRNA stability in an m6A-YTHDF2-dependent manner. FTO up-regulation under diabetic conditions was driven by lactate-mediated histone lactylation. FB23-2, an inhibitor to FTO's m6A demethylase activity, suppressed angiogenic phenotypes in vitro. To allow for systemic administration, we developed a nanoplatform encapsulating FB23-2 and confirmed its targeting and therapeutic efficiency in mice. Collectively, our study demonstrates that FTO is important for EC function and retinal homeostasis in DR, and warrants further investigation as a therapeutic target for DR patients.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Quinase 2 Dependente de Ciclina , Diabetes Mellitus , Retinopatia Diabética , Animais , Camundongos , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Células Endoteliais/metabolismo , Retina/metabolismo , RNA , Peixe-Zebra/genética
10.
IEEE Trans Med Imaging ; 42(1): 329, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37747846

RESUMO

In the above article [1], there is an error in (3). Instead of [Formula: see text] It should be [Formula: see text].

11.
Cell Rep ; 42(7): 112779, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436898

RESUMO

Retinal pigment epithelium (RPE) dysfunction and choroidal neovascularization (CNV) are predominant features of age-related macular degeneration (AMD), with an unclear mechanism. Herein, we show that RNA demethylase α-ketoglutarate-dependent dioxygenase alkB homolog 5 (ALKBH5) is up-regulated in AMD. In RPE cells, ALKBH5 overexpression associates with depolarization, oxidative stress, disturbed autophagy, irregular lipid homeostasis, and elevated VEGF-A secretion, which subsequently promotes proliferation, migration, and tube formation of vascular endothelial cells. Consistently, ALKBH5 overexpression in mice RPE correlates with various pathological phenotypes, including visual impairments, RPE anomalies, choroidal neovascularization (CNV), and interrupted retinal homeostasis. Mechanistically, ALKBH5 regulates retinal features through its demethylation activity. It targets PIK3C2B and regulates the AKT/mTOR signaling pathway with YTHDF2 as the N6-methyladenosine reader. IOX1, an ALKBH5 inhibitor, suppresses hypoxia-induced RPE dysfunction and CNV progression. Collectively, we demonstrate that ALKBH5 induces RPE dysfunction and CNV progression in AMD via PIK3C2B-mediated activation of the AKT/mTOR pathway. Pharmacological inhibitors of ALKBH5, like IOX1, are promising therapeutic options for AMD.


Assuntos
Homólogo AlkB 5 da RNA Desmetilase , Neovascularização de Coroide , Degeneração Macular , Animais , Camundongos , Neovascularização de Coroide/metabolismo , Células Endoteliais/metabolismo , Degeneração Macular/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Homólogo AlkB 5 da RNA Desmetilase/metabolismo
12.
J Biomed Res ; 37(5): 367-381, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37366063

RESUMO

Age-related macular degeneration (AMD) causes irreversible blindness in people aged over 50 worldwide. The dysfunction of the retinal pigment epithelium is the primary cause of atrophic AMD. In the current study, we used the ComBat and Training Distribution Matching method to integrate data obtained from the Gene Expression Omnibus database. We analyzed the integrated sequencing data by the Gene Set Enrichment Analysis. Peroxisome and tumor necrosis factor-α (TNF-α) signaling and nuclear factor kappa B (NF-κB) were among the top 10 pathways, and thus we selected them to construct AMD cell models to identify differentially expressed circular RNAs (circRNAs). We then constructed a competing endogenous RNA network, which is related to differentially expressed circRNAs. This network included seven circRNAs, 15 microRNAs, and 82 mRNAs. The Kyoto Encyclopedia of Genes and Genomes analysis of mRNAs in this network showed that the hypoxia-inducible factor-1 (HIF-1) signaling pathway was a common downstream event. The results of the current study may provide insights into the pathological processes of atrophic AMD.

13.
Diabetes ; 72(9): 1307-1319, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37347724

RESUMO

Diabetic retinopathy (DR), one of the most common microangiopathic complications in diabetes, causes severe visual damage among working-age populations. Retinal vascular endothelial cells, the key cell type in DR pathogenesis, are responsible for abnormal retinal angiogenesis in advanced stages of DR. The roles of exosomes in DR have been largely unknown. In this study, we report the first evidence that exosomes derived from the vitreous humor of patients with proliferative DR (PDR-exo) promote proliferation, migration, and tube formation of human retinal vascular endothelial cells (HRVECs). We identified long noncoding RNA (lncRNA) LOC100132249 enrichment in PDR-exo via high-throughput sequencing. This lncRNA, also mainly derived from HRVECs, promoted angiogenesis both in vitro and in vivo. Mechanistically, LOC100132249 acted as a competing endogenous sponge of miRNA-199a-5p (miR-199a-5p), thus regulating the endothelial-mesenchymal transition promoter SNAI1 via activation of the Wnt/ß-catenin pathway and ultimately resulting in endothelial dysfunction. In conclusion, our findings underscored the pathogenic role of endothelial-derived exosomes via the LOC100132249/miR-199a-5p/SNAI1 axis in DR angiogenesis and may shed light on new therapeutic strategies for future treatment of DR. ARTICLE HIGHLIGHTS: This study provides the first evidence that exosomes derived from vitreous humor from patients with proliferative diabetic retinopathy participate in angiogenesis. The findings demonstrate an unreported long noncoding RNA (lncRNA), LOC100132249, by exosomal sequencing of vitreous humor. The newly found lncRNA LOC100132249, mainly derived from endothelial cells, promotes angiogenesis via an miRNA-199a-5p/SNAI1/Wnt/ß-catenin axis in a pro-endothelial-mesenchymal transition manner.


Assuntos
Retinopatia Diabética , Exossomos , MicroRNAs , RNA Longo não Codificante , Humanos , beta Catenina/metabolismo , Proliferação de Células/genética , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Exossomos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
14.
IEEE J Biomed Health Inform ; 27(5): 2432-2443, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37028061

RESUMO

Large volume of labeled data is a cornerstone for deep learning (DL) based segmentation methods. Medical images require domain experts to annotate, and full segmentation annotations of large volumes of medical data are difficult, if not impossible, to acquire in practice. Compared with full annotations, image-level labels are multiple orders of magnitude faster and easier to obtain. Image-level labels contain rich information that correlates with the underlying segmentation tasks and should be utilized in modeling segmentation problems. In this article, we aim to build a robust DL-based lesion segmentation model using only image-level labels (normal v.s. abnormal). Our method consists of three main steps: (1) training an image classifier with image-level labels; (2) utilizing a model visualization tool to generate an object heat map for each training sample according to the trained classifier; (3) based on the generated heat maps (as pseudo-annotations) and an adversarial learning framework, we construct and train an image generator for Edema Area Segmentation (EAS). We name the proposed method Lesion-Aware Generative Adversarial Networks (LAGAN) as it combines the merits of supervised learning (being lesion-aware) and adversarial training (for image generation). Additional technical treatments, such as the design of a multi-scale patch-based discriminator, further enhance the effectiveness of our proposed method. We validate the superior performance of LAGAN via comprehensive experiments on two publicly available datasets (i.e., AI Challenger and RETOUCH).


Assuntos
Edema , Tomografia de Coerência Óptica , Humanos , Processamento de Imagem Assistida por Computador
15.
Differentiation ; 132: 51-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37069005

RESUMO

Retinal development is initiated by multipotent retinal progenitor cells, which undergo several rounds of cell divisions and subsequently terminal differentiation. Retinal regeneration is usually considered as the recapitulation of retinal development, which share common mechanisms underlying the cell cycle re-entry of adult retinal stem cells and the differentiation of retinal neurons. However, how proliferative retinal progenitor cells perform a precise transition to postmitotic retinal cell types during the process of development and regeneration remains elusive. It is proposed that both the intrinsic and extrinsic programming are involved in the transcriptional regulation of the spatio-temporal fate commitment. Epigenetic modifications and the regulatory mechanisms at both DNA and chromatin levels are also postulated to play an important role in the timing of differentiation of specific retinal cells. In the present review, we have summarized recent knowledge of epigenetic regulation that underlies the commitment of retinal progenitor cells in the settings of retinal development and regeneration.


Assuntos
Epigênese Genética , Retina , Diferenciação Celular/genética , Células-Tronco , Neurônios
16.
Front Pharmacol ; 14: 1138452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36843929

RESUMO

Background: Uveal melanoma (UM) is the most frequent ocular neoplasm with a strong metastatic ability. The prognostic value of metastasis-associated genes (MAGs) of UM remains unclear. It is urgent to develop a prognostic score system according to the MAGs of UM. Methods: Unsupervised clustering was used to identify MAGs-based molecular subtypes. Cox methods were utilized to generate a prognostic score system. The prognostic ability of the score system was detected by plotting ROC and survival curves. The immune activity and underlying function were depicted by CIBERSORT GSEA algorithms. Results: Gene cluster analysis determined two MAGs-based subclusters in UM, which were remarkably different in clinical outcomes. A risk score system containing six MAGs (COL11A1, AREG, TIMP3, ADAM12, PRRX1 and GAS1) was set up. We employed ssGSEA to compare immune activity and immunocyte infiltration between the two risk groups. Notch, JAK/STAT and mTOR pathways were greatly enriched in the high-risk group. Furthermore, we observed that knockdown of AREG could inhibit UM proliferation and metastasis by in vitro assays. Conclusion: The MAGs-based subtype and score system in UM can enhance prognosis assessment, and the core system provides valuable reference for clinical decision-making.

17.
J Pers Med ; 13(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36836523

RESUMO

(1) Background: The microstructural alterations of the peripapillary choriocapillaris in high myopes remain elusive. Here, we used optical coherence tomography angiography (OCTA) to explore factors involved in these alterations. (2) Methods: This cross-sectional control study included 205 young adults' eyes (95 with high myopia and 110 with mild to moderate myopia). The choroidal vascular network was imaged using OCTA, and the images underwent manual adjustments to determine the peripapillary atrophy (PPA)-ß zone and microvascular dropout (MvD). The area of MvD and the PPA-ß zone, spherical equivalent (SE), and axial length (AL) were collected and compared across groups. (3) Results: The MvD was identified in 195 eyes (95.1%). Highly myopic eyes exhibited a significantly greater area for the PPA-ß zone (1.221 ± 0.073 vs. 0.562 ± 0.383 mm2, p = 0.001) and MvD (0.248 ± 0.191 vs. 0.089 ± 0.082 mm2, p < 0.001) compared with mildly to moderately myopic eyes, and a lower average density in the choriocapillaris. Linear regression analysis showed that the MvD area correlated with age, SE, AL, and the PPA-ß area (all p < 0.05). (4) Conclusions: This study found that MvDs represent choroidal microvascular alterations in young-adult high myopes, which were correlated with age, SE, AL, and the PPA-ß zone. In this disorder, OCTA is important for characterizing the underlying pathophysiological adaptations.

18.
Exp Eye Res ; 228: 109388, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36652968

RESUMO

In this study we described a new model of subretinal edema induced by single intraocular injection of DL-alpha-aminoadipic acid (DLAAA) that can be employed to study the mechanism of retinal edema and test the efficacy or potential toxicity of treatments. The progression of subretinal edema was evaluated by fundus photography, fluorescein angiography and optical coherence tomography for up to 4 weeks following DLAAA injection. The VEGF, IL-6, TNF-α, Occludin, ZO-1, AQP4, Kir4.1, GFAP and GS levels were examined in DLAAA models by immunostaining, immumohistochemical staining and Western blot. Additionally, bulk RNA-seq was used to detect the mechanism involved in DLAAA-induced retinal Müller cellular injuries. In vivo and vitro assays were further conducted to confirm the sequencing results. Subretinal edema was successfully induced by DLAAA in New Zealand White rabbits (1.29 mg/eye) and C57BL/6 mice (50 or 100 µg/eye). Our results demonstrated that the disruption of blood-retinal-barrier, including vascular hyperpermeability, inflammation, and Müller cell dysfunction of fluid clearance, was involved in subretinal edema formation in the model. Bulk RNA-seq and in vitro studies indicated the activation of p38 MAPK signaling pathway in DLAAA models. This DLAAA-induced subretinal edema model can be used for mechanistic studies or drug screening.


Assuntos
Ácido 2-Aminoadípico , Edema , Camundongos , Animais , Coelhos , Camundongos Endogâmicos C57BL , Angiofluoresceinografia/métodos , Barreira Hematorretiniana/fisiologia , Tomografia de Coerência Óptica/métodos
19.
Comput Methods Programs Biomed ; 230: 107364, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36716636

RESUMO

BACKGROUND AND OBJECTIVE: Most of the existing disease prediction methods in the field of medical image processing fall into two classes, namely image-to-category predictions and image-to-parameter predictions.Few works have focused on image-to-image predictions. Different from multi-horizon predictions in other fields, ophthalmologists prefer to show more confidence in single-horizon predictions due to the low tolerance of predictive risk. METHODS: We propose a single-horizon disease evolution network (SHENet) to predictively generate post-therapeutic SD-OCT images by inputting pre-therapeutic SD-OCT images with neovascular age-related macular degeneration (nAMD). In SHENet, a feature encoder converts the input SD-OCT images to deep features, then a graph evolution module predicts the process of disease evolution in high-dimensional latent space and outputs the predicted deep features, and lastly, feature decoder recovers the predicted deep features to SD-OCT images. We further propose an evolution reinforcement module to ensure the effectiveness of disease evolution learning and obtain realistic SD-OCT images by adversarial training. RESULTS: SHENet is validated on 383 SD-OCT cubes of 22 nAMD patients based on three well-designed schemes (P-0, P-1 and P-M) based on the quantitative and qualitative evaluations. Three metrics (PSNR, SSIM, 1-LPIPS) are used here for quantitative evaluations. Compared with other generative methods, the generative SD-OCT images of SHENet have the highest image quality (P-0: 23.659, P-1: 23.875, P-M: 24.198) by PSNR. Besides, SHENet achieves the best structure protection (P-0: 0.326, P-1: 0.337, P-M: 0.349) by SSIM and content prediction (P-0: 0.609, P-1: 0.626, P-M: 0.642) by 1-LPIPS. Qualitative evaluations also demonstrate that SHENet has a better visual effect than other methods. CONCLUSIONS: SHENet can generate post-therapeutic SD-OCT images with both high prediction performance and good image quality, which has great potential to help ophthalmologists forecast the therapeutic effect of nAMD.


Assuntos
Processamento de Imagem Assistida por Computador , Degeneração Macular , Humanos , Processamento de Imagem Assistida por Computador/métodos , Tomografia de Coerência Óptica/métodos , Degeneração Macular/diagnóstico por imagem
20.
Retina ; 43(11): 2045-2050, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-35030148

RESUMO

PURPOSE: The purpose of this study was to investigate the clinical outcomes of an optimized method to clearly remove the subretinal proliferative tissue by transscleral puncture into the subretinal space in patients with grade C proliferative vitreoretinopathy without inducing retinal injury. METHODS: This was a prospective clinical observation study. Eight consecutive patients who had undergone optimized vitrectomy surgery for retinal detachment complicated by grade C proliferative vitreoretinopathy were investigated. Subretinal proliferation was cleared by adding one additional scleral 23-gauge trocar under the detached retina at 9 mm to 10 mm from the limbus. After the sclera is pierced, the puncture knife changed its direction without touching the retina. 23-G intraocular forceps were used to remove the proliferation strand or membrane through the puncture channel. RESULTS: Retinal reattachment was achieved in each case without a retinotomy. The mean best-corrected visual acuity was improved within the first 1 month ( P = 0.039) and remained stable at the following phase. There were no postoperative complications, such as reoccurrence of retinal detachment or proliferative vitreoretinopathy. No postoperative hemorrhage or hypotension was observed. CONCLUSION: The satisfying results demonstrated the feasibility of this cost-effective, easy-to-follow, transscleral vitrectomy method in treating retinal detachment with grade C proliferative vitreoretinopathy.


Assuntos
Descolamento Retiniano , Vitreorretinopatia Proliferativa , Humanos , Proliferação de Células , Estudos Prospectivos , Descolamento Retiniano/cirurgia , Acuidade Visual , Vitrectomia/métodos , Vitreorretinopatia Proliferativa/cirurgia , Vitreorretinopatia Proliferativa/complicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA