Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38802569

RESUMO

Graft-versus-host disease (GVHD), an immunological disorder that arises from donor T cell activation through recognition of host alloantigens, is the major limitation in the application of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Traditional immunosuppressive agents can relieve GVHD, but they induce serious side effects. It is highly required to explore alternative therapeutic strategy. Human amniotic epithelial stem cells (hAESCs) were recently considered as an ideal source for cell therapy with special immune regulatory property. In this study, we evaluated the therapeutic role of hAESCs in the treatment of GVHD, based on our previous developed cGMP-grade hAESCs product. Humanized mouse model of acute GVHD (aGVHD) was established by injection of huPBMCs via the tail vein. For prevention or treatment of aGVHD, hAESCs were injected to the mice on day -1 or on day 7 post-PBMC infusion, respectively. We showed that hAESCs infusion significantly alleviated the disease phenotype, increased the survival rate of aGVHD mice, and ameliorated pathological injuries in aGVHD target organs. We demonstrated that hAESCs directly induced CD4+ T cell polarization, in which Th1 and Th17 subsets were downregulated, and Treg subset was elevated. Correspondingly, the levels of a series of pro-inflammatory cytokines were reduced while the levels of the anti-inflammatory cytokines were upregulated in the presence of hAESCs. We found that hAESCs regulated CD4+ subset polarization in a paracrine mode, in which TGFß and PGE2 were selectively secreted to mediate Treg elevation and Th1/Th17 inhibition, respectively. In addition, transplanted hAESCs preserved the graft-versus-leukemia (GVL) effect by inhibiting leukemia cell growth. More intriguingly, hAESCs infusion in HSCT patients displayed potential anti-GVHD effect with no safety concerns and confirmed the immunoregulatory mechanisms in the preclinical study. We conclude that hAESCs infusion is a promising therapeutic strategy for post-HSCT GVHD without compromising the GVL effect. The clinical trial was registered at www.clinicaltrials.gov as #NCT03764228.

2.
Nat Commun ; 14(1): 7558, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985667

RESUMO

Preserving permafrost subgrade is a challenge due to global warming, but passive cooling techniques have limited success. Here, we present a novel wind-driven device that can cool permafrost subgrade by circulating coolant between the ambient air and the subgrade. It consists of a wind mill, a mechanical clutch with phase change material, and a fluid-circulation heat exchanger. The clutch engages and disengages through freezing and melting phase change material, while the device turns off when the outside air temperature exceeds a certain threshold, preventing heat from penetrating the subgrade. Two-year observations demonstrate that the device effectively cooled permafrost measuring 8.0 m in height and 1.5 m in radius by 0.6-1.0 °C, with an average power of 68.03 W. The device can be adapted for cooling embankments, airstrip bases, pipe foundations, and other structures. Further experimentation is required to evaluate its cooling capacity and long-term durability under various conditions.

3.
Adv Sci (Weinh) ; 10(33): e2301639, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37870182

RESUMO

Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.


Assuntos
Traumatismos da Medula Espinal , Regeneração da Medula Espinal , Ratos , Animais , Humanos , Alicerces Teciduais , Traumatismos da Medula Espinal/terapia , Engenharia Tecidual , Impressão Tridimensional
4.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35955866

RESUMO

The loss of photoreceptors is a major event of retinal degeneration that accounts for most cases of untreatable blindness globally. To date, there are no efficient therapeutic approaches to treat this condition. In the present study, we aimed to investigate whether human amniotic epithelial stem cells (hAESCs) could serve as a novel seed cell source of photoreceptors for therapy. Here, a two-step treatment with combined Wnt, Nodal, and BMP inhibitors, followed by another cocktail of retinoic acid, taurine, and noggin induced photoreceptor-like cell differentiation of hAESCs. The differentiated cells demonstrated the morphology and signature marker expression of native photoreceptor cells and, intriguingly, bore very low levels of major histocompatibility complex (MHC) class II molecules and a high level of non-classical MHC class I molecule HLA-G. Importantly, subretinal transplantation of the hAESCs-derived PR-like cells leads to partial restoration of visual function and retinal structure in Royal College of Surgeon (RCS) rats, the classic preclinical model of retinal degeneration. Together, our results reveal hAESCs as a potential source of functional photoreceptor cells; the hAESCs-derived photoreceptor-like cells could be a promising cell-replacement candidate for therapy of retinal degeneration diseases.


Assuntos
Degeneração Retiniana , Âmnio/metabolismo , Animais , Humanos , Células Fotorreceptoras/metabolismo , Ratos , Retina/metabolismo , Degeneração Retiniana/metabolismo , Células-Tronco/metabolismo
5.
Front Cell Dev Biol ; 9: 737242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650985

RESUMO

Age-related macular degeneration (AMD), featured with dysfunction and loss of retinal pigment epithelium (RPE), is lacking efficient therapeutic approaches. According to our previous studies, human amniotic epithelial stem cells (hAESCs) may serve as a potential seed cell source of RPE cells for therapy because they have no ethical concerns, no tumorigenicity, and little immunogenicity. Herein, trichostatin A and nicotinamide can direct hAESCs differentiation into RPE like cells. The differentiated cells display the morphology, marker expression and cellular function of the native RPE cells, and noticeably express little MHC class II antigens and high level of HLA-G. Moreover, visual function and retinal structure of Royal College of Surgeon (RCS) rats, a classical animal model of retinal degeneration, were rescued after subretinal transplantation with the hAESCs-derived RPE like cells. Our study possibly makes some contribution to the resource of functional RPE cells for cell therapy. Subretinal transplantation of hAESCs-RPE could be an optional therapeutic strategy for retinal degeneration diseases.

6.
Am J Transl Res ; 13(5): 5653-5658, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150172

RESUMO

OBJECTIVE: To illustrate the significance of combined detection of anti cardiolipin (ACL) and anti-ß2-glycoprotein 1 (ß2-GP1) in the diagnosis of adverse pregnancy. METHODS: 60 postnatal women with adverse pregnancy presented to our hospital from March 2019 to March 2020 were enrolled as the experimental group, and 60 postnatal women with normal delivery in the same period were selected as the control group. The levels of ACL, ß2-GP1 were measured to analyze the significance of the integrated detection in the diagnosis of adverse pregnancy. RESULTS: No obvious differences were observed in mean age, mean gestational week, mean height, number of cases of primigravida and multiparous women, educational background, place of residence between two groups (P > 0.05). The number of cases of positive ß2-GP1-IgG and ß2-GP1-IgM tests in experimental group were remarkably higher (P < 0.05). The number of ß2-GP1-IgA positive cases in the two kinds of parturients was not notably different (P > 0.05). The ACL of the experimental parturients had a notably higher number of ß2-GP1-positive cases (P < 0.001), and the combined positive cases of the experimental parturients had notably higher serum BPA and resistin levels (P < 0.001). The incidence of fetal growth restriction, premature delivery and placental abruption of experimental group were higher than those of control group (P < 0.05). There was no stillbirth in both groups. CONCLUSIONS: The positive expression of ACL with ß2-GP1 is the culprit of adverse pregnancy, and the combined diagnosis can greatly improve the clinical screening rate of adverse pregnancy and provide more evidence for subsequent treatment.

7.
Cell Transplant ; 29: 963689720908495, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32223314

RESUMO

As a refractory fibrosis disease, intrauterine adhesions (IUAs) is defined as fibrosis of the physiological endometrium. Although hysteroscopic adhesiolysis is widely recommended as an effective treatment, prognosis and recurrence remain poor in severe cases. Recently, stem cell therapy has been promoted as a promising treatment for IUAs. The ability of human amniotic epithelial cells (hAECs), emerging as a new candidate for stem cell therapy, to treat IUAs has not been demonstrated. To study the potential effects of hAECs on IUAs, we created an IUA rat model using mechanical injury and injected cultured primary hAECs into the rats' uteri. Next, we observed the morphological structure of endometrial thickness and glands using hematoxylin and eosin staining, and we detected extracellular-matrix collagen deposition using Masson staining. In addition, we performed immunohistochemical staining and reverse-transcription polymerase chain reaction (RT-PCR) to investigate potential fibrosis molecules and angiogenesis factors 7 d after hAECs transplantation. Finally, we detected estrogen receptor (ER) and growth factors via RT-PCR to verify the molecular mechanism underlying cell therapy. In the IUA rat models, endometrial thickness and endometrial glands proliferated and collagen deposition decreased significantly after hAEC transplantation. We found that during the recovery of injured endometrium, the crucial fibrosis marker transforming growth factor-ß (TGF-ß) was regulated and angiogenesis occurred in the endometrial tissue with the up-regulation of vascular endothelial growth factor. Furthermore, hAECs were shown to promote ER expression in the endometrium and regulate the inflammatory reaction in the uterine microenvironment. In conclusion, these results demonstrated that hAEC transplantation could inhibit the progression of fibrosis and promote proliferation and angiogenesis in IUA rat models. The current study suggests hAECs as a novel stem cell candidate in the treatment of severe IUA.


Assuntos
Âmnio/citologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Células Epiteliais/fisiologia , Animais , Adesão Celular/genética , Adesão Celular/fisiologia , Modelos Animais de Doenças , Endométrio/metabolismo , Células Epiteliais/citologia , Feminino , Humanos , Receptores de Estrogênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Útero/metabolismo
8.
Cell Transplant ; 27(10): 1504-1514, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30168350

RESUMO

As a featured ocular inflammatory disease, autoimmune uveitis is the major cause of blindness in the clinic. Although current immunosuppressive regimens can alleviate the progression of autoimmune uveitis, they have serious side effects. Therefore, an alternative therapeutic strategy is urgently required. The present study investigated the therapeutic efficacy of human amniotic epithelial cells (hAECs) on autoimmune uveitis in a rat model. Herein, experimental autoimmune uveitis (EAU) was induced in rats via a subcutaneous injection of interphotoreceptor retinoid-binding protein. EAU rats were treated with hAECs or the vehicle solution via a subretinal injection on day 0 and day 6 after immunization, and rats were sacrificed on day 12 and day 18 for further analysis. The pathological development of EAU was evaluated by slit lamp microscopy. Immune cell infiltration and retinal structure damage were examined by histological examination of hematoxylin and eosin (H&E) and immunofluorescence staining. T-cell subsets were detected by flow cytometry, and the levels of inflammatory cytokines were quantified by enzyme-linked immunosorbent assay (ELISA). hAEC treatment ameliorated the pathological progression of EAU and preserved the retinal structure organization and thickness, especially in the preventive group that received a subretinal injection on day 0. Moreover, hAECs inhibited the retinal infiltration of macrophages and T-cells. Mechanistically, hAECs modulated the balance of T-cell subsets by downregulating T helper (Th)17 cells and upregulating T regulatory (Treg) cells, as confirmed by decreased interleukin (IL)-17 and increased IL-10 levels in the spleens and lymph nodes of EAU rats. Furthermore, hAECs improved the local cytokine environment in EAU rats by suppressing the monocyte chemoattractant protein (MCP)-1, IL-17 and interferon (IFN)-γ levels and enhancing the IL-10 in the aqueous humor. Therefore, subretinal transplantation of hAECs in EAU rats ameliorated ocular inflammation, preserved the retinal structure and coordinated the immune balance. The current study provides a novel therapeutic strategy for autoimmune uveitis and related ocular inflammatory diseases in the clinic.


Assuntos
Âmnio/citologia , Doenças Autoimunes/terapia , Células Epiteliais/transplante , Retina/patologia , Uveíte/terapia , Animais , Doenças Autoimunes/patologia , Células Cultivadas , Células Epiteliais/citologia , Feminino , Humanos , Masculino , Ratos Endogâmicos Lew , Retina/citologia , Uveíte/patologia
9.
Cytotherapy ; 20(10): 1247-1258, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30174233

RESUMO

BACKGROUND AIMS: The chronic inflammation of autoimmune diseases develops repetitive localized destruction or systemic disorders, represented by Hashimoto's thyroiditis (HT) and Systemic lupus erythematosus (SLE) respectively. Currently, there are no efficient ways to treat these autoimmune diseases. Therefore, it is critically important to explore new therapeutic strategies. The aim of this study was to investigate the therapeutic efficacy of human amniotic epithelial cells (hAECs) in murine models of HT and SLE. METHODS: Experimental autoimmune thyroiditis (EAT) was induced in female CBA/J mice by immunization with porcine thyroglobulin (pTg). hAECs were intravenously administered at different time points during the disease course. MRL-Faslpr mice, a strain with spontaneously occurring SLE, were intravenously administered hAECs when their sera were positive for both anti-nuclear antibodies (ANAs) and anti-double-stranded DNA (anti-dsDNA) antibodies. Two weeks after the last cell transplantation, blood and tissue samples were collected for histological examination and immune system analysis. RESULTS: hAECs prevented lymphocytes infiltration into the thyroid and improved the damage of thyroid follicular in EAT mice. Correspondingly, hAECs administration reduced anti-thyroglobulin antibodies (TGAb), anti-thyroid peroxidase antibodies (TPOAb) and thyroid stimulating hormone (TSH) levels. SLE mice injected with hAECs appeared negative for ANAs and anti-dsDNA antibodies and showed reduced immunoglobulin profiles. Mechanically, hAECs modulated the immune cells balance in EAT and SLE mice, by downregulating the ratios of Th17/Treg cells in both EAT and SLE mice and upregulating the proportion of B10 cells in EAT mice. This was confirmed by in vitro assay, in which hAECs inhibited the activation of EAT mice-derived splenocytes. Moreover, hAECs improved the cytokine environment in both EAT and SLE mice, by suppressing the levels of IL-17A and IFN-γ and enhancing TGF-ß. CONCLUSION: These results demonstrated the immunoregulatory effect of hAECs for inflammation inhibition and injury recovery in HT and SLE murine models. The current study may provide a novel therapeutic strategy for these autoimmune diseases in clinic.


Assuntos
Âmnio/citologia , Células Epiteliais/transplante , Doença de Hashimoto/terapia , Lúpus Eritematoso Sistêmico/terapia , Animais , Autoanticorpos/metabolismo , Citocinas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Células Epiteliais/imunologia , Feminino , Doença de Hashimoto/imunologia , Humanos , Lúpus Eritematoso Sistêmico/imunologia , Camundongos Endogâmicos CBA , Linfócitos T Reguladores/imunologia , Tireoidite Autoimune/etiologia , Tireoidite Autoimune/terapia , Tireotropina/sangue
10.
Acta Pharmacol Sin ; 39(8): 1305-1316, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29565036

RESUMO

Human amniotic epithelial cells (hAECs), derived from the innermost layer of the term placenta closest to the fetus, have been shown to be potential seed cells for allogeneic cell therapy. Previous studies have shown a certain therapeutic effect of hAECs. However, no appropriate isolation and culture system for hAECs has been developed for clinical applications. In the present study, we established a serum-free protocol for hAEC isolation and cultivation, in which better cell growth was observed compared with that in a traditional culture system with serum. In addition to specific expression of cell surface markers (CD29, CD166 and CD90), characterization of the biological features of hAECs revealed expression of the pluripotent markers SSEA4, OCT4 and NANOG, which was greater than that in human mesenchymal stem cells, whereas very low levels of HLA-DR and HLA-DQ were detected, suggesting the weak immunogenicity of hAECs. Intriguingly, CD90+ hAECs were identified as a unique population with a powerful immunoregulatory capacity. In a systemic safety evaluation, intravenous administration of hAEC did not result in hemolytic, allergy, toxicity issues or, more importantly, tumorigenicity. Finally, the therapeutic effect of hAECs was demonstrated in mice with radiation-induced damage. The results revealed a novel function of hAECs in systemic injury recovery. Therefore, the current study provides an applicable and safe strategy for hAEC cell therapy administration in the clinical setting.


Assuntos
Âmnio/citologia , Células Epiteliais , Transplante de Células-Tronco , Animais , Testes de Carcinogenicidade , Células Cultivadas , Meios de Cultura Livres de Soro , Citocinas/metabolismo , Células Epiteliais/fisiologia , Células Epiteliais/transplante , Feminino , Cobaias , Humanos , Masculino , Camundongos Endogâmicos ICR , Camundongos Endogâmicos NOD , Camundongos SCID , Gravidez , Cultura Primária de Células , Lesões Experimentais por Radiação/terapia , Ratos Sprague-Dawley , Antígenos Thy-1/metabolismo
11.
Arch Toxicol ; 92(1): 259-272, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28733890

RESUMO

Exposure to high-dose benzene leads to the inhibition of erythroid differentiation. However, whether lower doses of benzene exposure resemble high-dose effects in erythroid differentiation, as well as the underlying mechanisms, remains largely unknown. To identify the microRNAs (miRNAs) specifically responsible for benzene exposure and their regulatory role in erythroid differentiation, we performed miRNA microarray in CD34+ hematopoietic progenitor cells isolated from human umbilical cord blood after treatment with hydroquinone (HQ), a metabolite of benzene at concentrations of 0, 1.0, 2.5, and 5.0 µM. As a result, HQ treatment inhibited erythroid differentiation in a dose-response manner. miRNA microarray analysis revealed that miRNA-451a, miRNA-486-5p and miRNA-126-3p expression were significantly lower in HQ-treated CD34+ hematopoietic progenitor cells. In vitro studies showed that miRNA-451a and miRNA-486-5p were up-regulated during erythroid differentiation both in CD34+ hematopoietic progenitor cells and K562 cells. The increase in the percentage of benzidine-positive cells and the expression of γ-globin in K562 cells transfected with either miRNA-451a or miRNA-486-5p mimic indicated that both miRNAs played a role in the promotion of erythroid cell differentiation. Overexpression of either miRNA-451a or miRNA-486-5p attenuated the inhibitory effects on erythroid differentiation in HQ-treated K562 cells. In vivo study showed a decreasing count of peripheral red blood cell (RBC) in C57BL/6J male mice treated with aerosol benzene at concentrations of 0, 1, 5, 25 ppm (time weight average, TWA). In addition, the expression of miRNA-451a or miRNA-486-5p was negatively correlated with the concentration of benzene inhalation on erythroid toxicity of C57BL/6J mice. Particularly, the decline in miRNA-451a and miRNA-486-5p expression appeared in male chronic benzene poisoning patients, and was correlated with a constant decrease in their RBC counts over the first 3 months after being diagnosed. These findings indicate that the suppression of miRNA-451a or miRNA-486-5p might be associated with the benzene-induced perturbation of erythroid cell differentiation.


Assuntos
Benzeno/toxicidade , Diferenciação Celular/efeitos dos fármacos , Células-Tronco Hematopoéticas/efeitos dos fármacos , MicroRNAs/genética , Adulto , Animais , Benzeno/administração & dosagem , Benzeno/intoxicação , Antígenos CD4 , Diferenciação Celular/genética , Relação Dose-Resposta a Droga , Regulação para Baixo/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Hidroquinonas/administração & dosagem , Hidroquinonas/toxicidade , Células K562 , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
12.
Toxicol Res (Camb) ; 5(3): 848-858, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30090394

RESUMO

The MiR-146a/TRAF6/NF-κB axis is important for the regulation of hematopoiesis and the immune system. To identify the key axis that regulates benzene-induced hematotoxicity or even leukemia, we investigated miR-146a expression in human CD34+ hematopoietic progenitor cells (HPCs) and human acute promyelocytic leukemia cells (HL-60) during the differentiation process. By performing a colony formation assay and flow cytometry on cells in the differentiation process after hydroquinone treatment, we found that hydroquinone induced a marked reduction of differentiation toward myeloid cells and immune cells in CD34+ cells (5 days exposure) as well as in HL-60 cells (3 h exposure). Further study using real-time PCR and western blot showed that the impaired myeloid differentiation was accompanied by the up-regulation of miR-146a and the down-regulation of TRAF6 and NF-κB. Using the miR-146a-5p inhibitor to suppress miR-146a expression could relieve the inhibitory effect on myeloid differentiation induced by hydroquinone to a certain extent. At the same time, the level of TRAF6 protein, as well as the phosphorylated IκBα protein which indicates NF-κB transcriptional activity was restored to the same levels as the control group. These results suggested that hydroquinone induced a dysregulation of miR-146a and its downstream NF-κB transcriptional factor pathway, which might be an early event in the generation of benzene-induced differentiation disturbance and subsequent leukemogenesis.

13.
Br J Pharmacol ; 173(7): 1143-53, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25296881

RESUMO

BACKGROUND AND PURPOSE: The endocannabinoid (eCB) system is involved in pathways that regulate drug addiction and eCB-mediated synaptic plasticity has been linked with addictive behaviours. Here, we investigated the molecular mechanisms underlying the changes in eCB-dependent synaptic plasticity in the nucleus accumbens core (NAcc) following short-term withdrawal from repeated morphine treatment. EXPERIMENTAL APPROACH: Conditioned place preference (CPP) was used to evaluate the rewarding effects of morphine in rats. Evoked inhibitory postsynaptic currents of medium spiny neurons in NAcc were measured using whole-cell patch-clamp recordings. Changes in depolarization-induced suppression of inhibition (DSI) in the NAcc were assessed to determine the effect of short-term morphine withdrawal on the eCB system. To identify the potential modulation mechanism of short-term morphine withdrawal on the eCB system, the expression of diacylglycerol lipase α (DGL-α) and monoacylglycerol lipase was detected by Western blot analysis. KEY RESULTS: Repeated morphine administration for 7 days induced stable CPP. Compared with the saline group, the level of DSI in the NAcc was significantly increased in rats after short-term morphine withdrawal. Furthermore, this increase in DSI coincided with a significant increase in the expression of DGL-α. CONCLUSIONS AND IMPLICATIONS: Short-term morphine withdrawal potentiates eCB modulation of inhibitory synaptic transmission in the NAcc. We also found that DGL-α expression was elevated after short-term morphine withdrawal, suggesting that the eCB 2-arachidonyl-glycerol but not anandamide mediates the increase in DSI. These findings provide useful insights into the mechanisms underlying eCB-mediated plasticity in the NAcc during drug addiction. LINKED ARTICLES: This article is part of a themed section on Endocannabinoids. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v173.7/issuetoc.


Assuntos
Endocanabinoides/metabolismo , Lipase Lipoproteica/metabolismo , Dependência de Morfina/fisiopatologia , Morfina/efeitos adversos , Núcleo Accumbens/fisiopatologia , Síndrome de Abstinência a Substâncias/fisiopatologia , Transmissão Sináptica , Animais , Condicionamento Psicológico , Corpo Estriado/metabolismo , Corpo Estriado/fisiopatologia , Dependência de Morfina/metabolismo , Dependência de Morfina/psicologia , Inibição Neural , Núcleo Accumbens/metabolismo , Ratos Sprague-Dawley , Síndrome de Abstinência a Substâncias/metabolismo , Síndrome de Abstinência a Substâncias/psicologia
14.
PLoS One ; 9(8): e104546, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25118895

RESUMO

The function of TRPV1 (transient receptor potential vanilloid subfamily, member 1) in the central nervous system is gradually elucidated. It has been recently proved to be expressed in nucleus accumbens (NAc), a region playing an essential role in mediating opioid craving and taking behaviors. Based on the general role of TRPV1 antagonist in blocking neural over-excitability by both pre- and post-synaptic mechanisms, TRPV1 antagonist capsazepine (CPZ) was tested for its ability to prohibit persistent opioid craving in rats. In the present study, we assessed the expression of TRPV1 in nucleus accumbens and investigated the effect of CPZ in bilateral nucleus accumbens on persistent morphine conditioned place preference (mCPP) in rats. We also evaluated the side-effect of CPZ on activity by comparing cross-beam times between groups. We found that morphine conditioned place preference increased the TRPV1 expression and CPZ attenuated morphine conditioned place preference in a dose-dependent and target-specific manner after both short- and long-term spontaneous withdrawal, reflected by the reduction of the increased time in morphine-paired side. CPZ (10 nM) could induce prolonged and stable inhibition of morphine conditioned place preference expression. More importantly, CPZ did not cause dysfunction of activity in the subjects tested, which indicates the inhibitory effect was not obtained at the sacrifice of regular movement. Collectively, these results indicated that injection of TRPV1 antagonist in nucleus accumbens is capable of attenuating persistent morphine conditioned place preference without affecting normal activity. Thus, TRPV1 antagonist is one of the promising therapeutic drugs for the treatment of opioid addiction.


Assuntos
Capsaicina/análogos & derivados , Fissura/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Comportamento Espacial/efeitos dos fármacos , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Animais , Western Blotting , Capsaicina/farmacologia , Relação Dose-Resposta a Droga , Masculino , Microscopia Imunoeletrônica , Morfina , Ratos , Ratos Sprague-Dawley
15.
Brain Res ; 1531: 102-12, 2013 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-23911834

RESUMO

Relapse is a major clinical problem and remains a major challenge in the treatment of drug addiction. There is strong evidence that the endocannabinoid system of the nucleus accumben core (NAcc) is involved in drug-seeking behavior, as well as in the mechanisms that underlie relapse to drug use. To reveal the mechanism that underlies this finding, we examined the expression pattern of the cannabinoid receptor 1 (CB1-R) in the NAcc of SD rats that had been undergoing morphine withdrawal (MW) for 1 day, 3 days and 3 weeks (acute, latent and chronic phases, respectively). Morphine exposure induced conditioned place preference (CPP) in rats. Significant increase of CB1-R expression in NAcc was observed in animals in the 1 day, 3 days and 3 weeks morphine withdrawal compare to the control group. Immunofluorescence labeling showed axonal fibers or terminals by fluorescence microscope observation. Immunoelectron microscopy detection showed silver-gold particles located in the presynaptic membranes that mainly give rise to symmetrical synapses. Quantitative electron microscopy showed an increase in number of CB1-R-positive terminals in the morphine withdrawal groups and the number of immunogold particles was significantly increased at these inhibitory terminals. We also confirmed that infusions of the CB1-R antagonist rimonabant into the NAcc attenuated the CPP during morphine withdrawal. Our present data have thus indicated that increasing pattern of CB1-R expression in the NAcc during above morphine withdrawal phases, which might underlie the relapse associated drug seeking behavior after morphine withdrawal.


Assuntos
Modelos Animais de Doenças , Dependência de Morfina/metabolismo , Núcleo Accumbens/metabolismo , Receptor CB1 de Canabinoide/biossíntese , Síndrome de Abstinência a Substâncias/metabolismo , Regulação para Cima/fisiologia , Animais , Masculino , Ratos , Ratos Sprague-Dawley , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA