Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Methods ; 16(29): 4917-4937, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38984495

RESUMO

Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , DNA Catalítico/química , DNA Catalítico/metabolismo , Técnicas Biossensoriais/métodos , Humanos , Quadruplex G , Hemina/química , Bactérias/isolamento & purificação
2.
Anal Chim Acta ; 1273: 341559, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37423656

RESUMO

The measurement of DNA methyltransferase (MTase) activity and screening of DNA MTase inhibitors holds significant importance for the diagnosis and therapy of methylation-related illness. Herein, we developed a colorimetric biosensor (PER-FHGD nanodevice) to detect DNA MTase activity by integrating the primer exchange reaction (PER) amplification and functionalized hemin/G-quadruplex DNAzyme (FHGD). By replacing the native hemin cofactor into the functionalized cofactor mimics, FHGD has exhibited significantly improved catalytic efficiency, thereby enhancing the detection performance of the FHGD-based system. The proposed PER-FHGD system is capable of detecting Dam MTase with excellent sensitivity, exhibiting a limit of detection (LOD) as low as 0.3 U/mL. Additionally, this assay demonstrates remarkable selectivity and ability for Dam MTase inhibitors screening. Furthermore, using this assay, we successfully detect the Dam MTase activity both in serum and in E. coli cell extracts. Importantly, this system has the potential to serve as a universal strategy for FHGD-based diagnosis in point-of-care (POC) tests, by simply altering the recognition sequence of the substrate for other analytes.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , Quadruplex G , DNA Catalítico/metabolismo , Hemina , Colorimetria , Escherichia coli/genética , DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA