Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Oncol ; 11: 742149, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34660304

RESUMO

Ovarian cancer, a common malignant tumor, is one of the primary causes of cancer-related deaths in women. Systemic chemotherapy with platinum-based compounds or taxanes is the first-line treatment for ovarian cancer. However, resistance to these chemotherapeutic drugs worsens the prognosis. The underlying mechanism of chemotherapeutic resistance in ovarian cancer remains unclear. Non-coding RNAs, including long non-coding RNAs, microRNAs, and circular RNAs, have been implicated in the development of drug resistance. Abnormally expressed non-coding RNAs can promote ovarian cancer resistance by inducing apoptosis inhibition, protective autophagy, abnormal tumor cell proliferation, epithelial-mesenchymal transition, abnormal glycolysis, drug efflux, and cancer cell stemness. This review summarizes the role of non-coding RNAs in the development of chemotherapeutic resistance in ovarian cancer, including their mechanisms, targets, and potential signaling pathways. This will facilitate the development of novel chemotherapeutic agents that can target these non-coding RNAs and improve ovarian cancer treatment.

2.
J Pers Med ; 11(9)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34575649

RESUMO

Physical exercise may stimulate lipolytic activity within adipose tissue. Furthermore, resistance exercise may contribute to the more efficient reduction in adipose tissue mass and prevent the accumulation thereof in obese women. The purpose of this study was to examine the effects of regular resistance exercise for 12 weeks on the lipolysis pathway in women with obesity. Twenty-three pre- and postmenopausal women with body fat percentages of 30% or more were divided into the premenopausal group (n = 9) and the postmenopausal group (n = 14). All subjects participated in resistance exercise training for 12 weeks. Anthropometric and physical fitness tests were performed on all participants. Protein analyses were performed on extracted subcutaneous fatty tissue, and changes in the relevant protein levels in the samples were analyzed by Western blotting. All serum samples were submitted for enzyme-linked immunosorbent assay measurements of adipocyte factors. After 12 weeks, the adipose triglyceride lipase, monoacylglycerol lipase, and perilipin1 protein levels were significantly lower in the postmenopausal group than in the premenopausal group. The hormone-sensitive lipase protein levels were significantly higher in the postmenopausal group than in the premenopausal group. In addition, leptin concentrations were significantly decreased after resistance exercise in the postmenopausal group. Adiponectin concentrations were significantly increased after resistance exercise in both groups. These findings indicate that regular resistance exercise is effective in reducing the weight and body fat of obese premenopausal women, and in the secretion of adiponectin. On the other hand, postmenopausal women were found to have redeced weight and body fat, and were found to be positive for the secretion of adipokine factors. In addition, positive changes in lipolysis pathway factors in adipose tissue promote lipid degradation and reduce fat mass. Thus, regular resistance exercise shows positive changes in the lipolysis pathway more effectively in weight and body fat reduction in postmenopausal women than in premenopausal women.

3.
Front Mol Biosci ; 8: 620514, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33928116

RESUMO

Endoplasmic reticulum stress (ERS), which refers to a series of adaptive responses to the disruption of endoplasmic reticulum (ER) homeostasis, occurs when cells are treated by drugs or undergo microenvironmental changes that cause the accumulation of unfolded/misfolded proteins. ERS is one of the key responses during the drug treatment of solid tumors. Drugs induce ERS by reactive oxygen species (ROS) accumulation and Ca2+ overload. The unfolded protein response (UPR) is one of ERS. Studies have indicated that the mechanism of ERS-mediated drug resistance is primarily associated with UPR, which has three main sensors (PERK, IRE1α, and ATF6). ERS-mediated drug resistance in solid tumor cells is both intrinsic and extrinsic. Intrinsic ERS in the solid tumor cells, the signal pathway of UPR-mediated drug resistance, includes apoptosis inhibition signal pathway, protective autophagy signal pathway, ABC transporter signal pathway, Wnt/ß-Catenin signal pathway, and noncoding RNA. Among them, apoptosis inhibition is one of the major causes of drug resistance. Drugs activate ERS and its downstream antiapoptotic proteins, which leads to drug resistance. Protective autophagy promotes the survival of solid tumor cells by devouring the damaged organelles and other materials and providing new energy for the cells. ERS induces protective autophagy by promoting the expression of autophagy-related genes, such as Beclin-1 and ATG5-ATG12. ABC transporters pump drugs out of the cell, which reduces the drug-induced apoptosis effect and leads to drug resistance. In addition, the Wnt/ß-catenin signal pathway is also involved in the drug resistance of solid tumor cells. Furthermore, noncoding RNA regulates the ERS-mediated survival and death of solid tumor cells. Extrinsic ERS in the solid tumor cells, such as ERS in immune cells of the tumor microenvironment (TME), also plays a crucial role in drug resistance by triggering immunosuppression. In immune system cells, ERS in dendritic cells (DCs) and myeloid-derived suppressor cells (MDSCs) influences the antitumor function of normal T cells, which results in immunosuppression. Meanwhile, ERS in T cells can also cause impaired functioning and apoptosis, leading to immunosuppression. In this review, we highlight the core molecular mechanism of drug-induced ERS involved in drug resistance, thereby providing a new strategy for solid tumor treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA