Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1355090, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38828217

RESUMO

Clubroot disease poses a significant threat to Brassica crops, necessitating ongoing updates on resistance gene sources. In F2 segregants of the clubroot-resistant inbred line BrT18-6-4-3 and susceptible DH line Y510, the genetic analysis identified a single dominant gene responsible for clubroot resistance. Through bulk segregant sequencing analysis and kompetitive allele-specific polymerase chain reaction assays, CRA8.1.6 was mapped within 110 kb (12,255-12,365 Mb) between markers L-CR11 and L-CR12 on chromosome A08. We identified B raA08g015220.3.5C as the candidate gene of CRA8.1.6. Upon comparison with the sequence of disease-resistant material BrT18-6-4-3, we found 249 single-nucleotide polymorphisms, seven insertions, six deletions, and a long terminal repeat (LTR) retrotransposon (5,310 bp) at 909 bp of the first intron. However, the LTR retrotransposon was absent in the coding sequence of the susceptible DH line Y510. Given the presence of a non-functional LTR insertion in other materials, it showed that the LTR insertion might not be associated with susceptibility. Sequence alignment analysis revealed that the fourth exon of the susceptible line harbored two deletions and an insertion, resulting in a frameshift mutation at 8,551 bp, leading to translation termination at the leucine-rich repeat domain's C-terminal in susceptible material. Sequence alignment of the CDS revealed a 99.4% similarity to Crr1a, which indicate that CRA8.1.6 is likely an allele of the Crr1a gene. Two functional markers, CRA08-InDel and CRA08-KASP1, have been developed for marker-assisted selection in CR turnip cultivars. Our findings could facilitate the development of clubroot-resistance turnip cultivars through marker-assisted selection.

2.
BMC Plant Biol ; 24(1): 289, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627624

RESUMO

BACKGROUND: Long non-coding RNAs (lncRNAs) play a crucial role in regulating gene expression vital for the growth and development of plants. Despite this, the role of lncRNAs in Chinese cabbage (Brassica rapa L. ssp. pekinensis) pollen development and male fertility remains poorly understood. RESULTS: In this study, we characterized a recessive genic male sterile mutant (366-2 S), where the delayed degradation of tapetum and the failure of tetrad separation primarily led to the inability to form single microspores, resulting in male sterility. To analyze the role of lncRNAs in pollen development, we conducted a comparative lncRNA sequencing using anthers from the male sterile mutant line (366-2 S) and the wild-type male fertile line (366-2 F). We identified 385 differentially expressed lncRNAs between the 366-2 F and 366-2 S lines, with 172 of them potentially associated with target genes. To further understand the alterations in mRNA expression and explore potential lncRNA-target genes (mRNAs), we performed comparative mRNA transcriptome analysis in the anthers of 366-2 S and 366-2 F at two stages. We identified 1,176 differentially expressed mRNAs. Remarkably, GO analysis revealed significant enrichment in five GO terms, most notably involving mRNAs annotated as pectinesterase and polygalacturonase, which play roles in cell wall degradation. The considerable downregulation of these genes might contribute to the delayed degradation of tapetum in 366-2 S. Furthermore, we identified 15 lncRNA-mRNA modules through Venn diagram analysis. Among them, MSTRG.9997-BraA04g004630.3 C (ß-1,3-glucanase) is associated with callose degradation and tetrad separation. Additionally, MSTRG.5212-BraA02g040020.3 C (pectinesterase) and MSTRG.13,532-BraA05g030320.3 C (pectinesterase) are associated with cell wall degradation of the tapetum, indicating that these three candidate lncRNA-mRNA modules potentially regulate pollen development. CONCLUSION: This study lays the foundation for understanding the roles of lncRNAs in pollen development and for elucidating their molecular mechanisms in regulating male sterility in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Infertilidade Masculina , RNA Longo não Codificante , Masculino , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Brassica/genética , Perfilação da Expressão Gênica/métodos , Transcriptoma , Fertilidade , Regulação da Expressão Gênica de Plantas , Infertilidade das Plantas/genética
3.
Plant Cell Rep ; 43(1): 23, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38150101

RESUMO

KEY MESSAGE: Imbalanced chromosomes and cell cycle arrest, along with down-regulated genes in DNA damage repair and sperm cell differentiation, caused pollen abortion in synthetic allodiploid Brassica juncea hybrids. Interspecific hybridization is considered to be a major pathway for species formation and evolution in angiosperms, but the occurrence of pollen abortion in the hybrids is common, prompting us to recheck male gamete development in allodiploid hybrids after the initial combination of different genomes. Here, we investigated the several key meiotic and mitotic events during pollen development using the newly synthesised allodiploid B. juncea hybrids (AB, 2n = 2× = 18) as a model system. Our results demonstrated the partial synapsis and pairing of non-homologous chromosomes concurrent with chaotic spindle assembly, affected chromosome assortment and distribution during meiosis, which finally caused difference in genetic constitution amongst the final tetrads. The mitotic cell cycle arrest during microspore development resulted in the production of anucleate pollen cells. Transcription analysis showed that sets of key genes regulating cyclin (CYCA1;2 and CYCA2;3), DNA damage repair (DMC1, NBS1 and MMD1), and ubiquitin-proteasome pathway (SINAT4 and UBC) were largely downregulated at the early pollen meiosis stages, and those genes involved in sperm cell differentiation (DUO1, PIRL1, PIRL9 and LBD27) and pollen wall synthesis (PME48, VGDH11 and COBL10) were mostly repressed at the late pollen mitosis stages in the synthetic allodiploid B. juncea hybrids (AB). In conclusion, this study elucidated the related mechanisms affecting pollen fertility during male gametophyte development at the cytological and transcriptomic levels in the synthetic allodiploid B. juncea hybrids.


Assuntos
Mostardeira , Sementes , Feminino , Gravidez , Humanos , Mostardeira/genética , Fertilidade/genética , Perfilação da Expressão Gênica , Transcriptoma/genética
4.
GigaByte ; 2023: gigabyte92, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37753478

RESUMO

The Oriental rat snake Ptyas mucosa is a common non-venomous snake of the colubrid family, spanning most of South and Southeast Asia. P. mucosa is widely bred for its uses in traditional medicine, scientific research, and handicrafts. Therefore, genome resources of P. mucosa could play an important role in the efficacy of traditional medicine and the analysis of the living environment of this species. Here, we present a highly continuous P. mucosa genome with a size of 1.74 Gb. Its scaffold N50 length is 9.57 Mb, and the maximal scaffold length is 78.3 Mb. Its CG content is 37.9%, and its gene integrity reaches 86.6%. Assembled using long-reads, the total length of the repeat sequences in the genome reaches 735 Mb, and its repeat content is 42.19%. Finally, 24,869 functional genes were annotated in this genome. This study may assist in understanding P. mucosa and supporting medicinal research.

5.
Int J Mol Sci ; 24(14)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37511608

RESUMO

Clubroot is a soil-borne disease caused by Plasmodiophora brassicae, which can seriously affect the growth and production of cruciferous crops, especially Chinese cabbage crops, worldwide. At present, few studies have been conducted on the molecular mechanism of this disease's resistance response. In this experiment, we analyzed the bioinformation of bra-miR167a, constructed a silencing vector (STTM167a) and an overexpression vector (OE-miR167a), and transformed them to Arabidopsis to confirm the role of miR167a in the clubroot resistance mechanism of Arabidopsis. Afterwards, phenotype analysis and expression level analysis of key genes were conducted on transgenic plants. From the result, we found that the length and number of lateral roots of silence transgenic Arabidopsis STTM167a was higher than that of WT and OE-miR167a. In addition, the STTM167a transgenic Arabidopsis induced up-regulation of disease resistance-related genes (PR1, PR5, MPK3, and MPK6) at 3 days after inoculation. On the other hand, the auxin pathway genes (TIR1, AFB2, and AFB3), which are involved in maintaining the balance of auxin/IAA and auxin response factor (ARF), were down-regulated. These results indicate that bra-miR167a is negative to the development of lateral roots and auxins, but positive to the expression of resistance-related genes. This also means that the STTM167a can improve the resistance of clubroot by promoting lateral root development and the level of auxin, and can induce resistance-related genes by regulating its target genes. We found a positive correlation between miR167a and clubroot disease, which is a new clue for the prevention and treatment of clubroot disease.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Plasmodioforídeos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos/metabolismo , Doenças das Plantas/genética , Plasmodioforídeos/fisiologia
7.
Microorganisms ; 11(3)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36985249

RESUMO

As microorganisms are very sensitive to changes in the lake environment, a comprehensive and systematic understanding of the structure and diversity of lake sediment microbial communities can provide feedback on sediment status and lake ecosystem protection. Xiao Xingkai Lake (XXL) and Xingkai Lake (XL) are two neighboring lakes hydrologically connected by a gate and dam, with extensive agricultural practices and other human activities existing in the surrounding area. In view of this, we selected XXL and XL as the study area and divided the area into three regions (XXLR, XXLD, and XLD) according to different hydrological conditions. We investigated the physicochemical properties of surface sediments in different regions and the structure and diversity of bacterial communities using high-throughput sequencing. The results showed that various nutrients (nitrogen, phosphorus) and carbon (DOC, LOC, TC) were significantly enriched in the XXLD region. Proteobacteria, Firmicutes, and Bacteroidetes were the dominant bacterial phyla in the sediments, accounting for more than 60% of the entire community in all regions. Non-metric multidimensional scaling analysis and analysis of similarities confirmed that ß-diversity varied among different regions. In addition, the assembly of bacterial communities was dominated by a heterogeneous selection in different regions, indicating the important influence of sediment environmental factors on the community. Among these sediment properties, the partial least squares path analysis revealed that pH was the best predictor variable driving differences in bacterial communities in different regions, with higher pH reducing beta diversity among communities. Overall, our study focused on the structure and diversity of bacterial communities in lake sediments of the Xingkai Lake basin and revealed that high pH causes the ß-diversity of bacterial communities in the sediment to decrease. This provides a reference for further studies on sediment microorganisms in the Xingkai Lake basin in the future.

8.
Plants (Basel) ; 12(6)2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36987072

RESUMO

The SHPRH (SNF2, histone linker, PHD, RING, helicase) subfamily belonging to ATP-dependent chromatin remodeling factor is the effective tumor-suppressor, which can polyubiquitinate PCNA (proliferating cell nuclear antigen) and participate in post-replication repair in human. However, little is known about the functions of SHPRH proteins in plants. In this study, we identified a novel SHPRH member BrCHR39 and obtained BrCHR39-silenced transgenic Brassica rapa. In contrast to wild-type plants, transgenic Brassica plants exhibited a released apical dominance phenotype with semi-dwarfism and multiple lateral branches. Furthermore, a global alteration of DNA methylation in the main stem and bud appeared after silencing of BrCHR39. Based on the GO (gene ontology) functional annotation and KEGG (Kyoto encyclopedia of genes and genomes) pathway analysis, the plant hormone signal transduction pathway was clearly enriched. In particular, we found a significant increase in the methylation level of auxin-related genes in the stem, whereas auxin- and cytokinin-related genes were hypomethylated in the bud of transgenic plants. In addition, further qRT-PCR (quantitative real-time PCR) analysis revealed that DNA methylation level always had an opposite trend with gene expression level. Considered together, our findings indicated that suppression of BrCHR39 expression triggered the methylation divergence of hormone-related genes and subsequently affected transcription levels to regulate the apical dominance in Brassica rapa.

9.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768734

RESUMO

Clubroot is an infectious root disease caused by Plasmodiophora brassicae in Brassica crops, which can cause immeasurable losses. We analyzed integrative transcriptome, small RNAs, degradome, and phytohormone comprehensively to explore the infection mechanism of P. brassicae. In this study, root samples of Brassica rapa resistant line material BrT24 (R-line) and susceptible line material Y510-9 (S-line) were collected at four different time points for cytological, transcriptome, miRNA, and degradome analyses. We found the critical period of disease resistance and infection were at 0-3 DAI (days after inoculation) and 9-20 DAI, respectively. Based on our finding, we further analyzed the data of 9 DAI vs. 20 DAI of S-line and predicted the key genes ARF8, NAC1, NAC4, TCP10, SPL14, REV, and AtHB, which were related to clubroot disease development and regulating disease resistance mechanisms. These genes are mainly related to auxin, cytokinin, jasmonic acid, and ethylene cycles. We proposed a regulatory model of plant hormones under the mRNA-miRNA regulation in the critical period of P. brassicae infection by using the present data of the integrative transcriptome, small RNAs, degradome, and phytohormone with our previously published results. Our integrative analysis provided new insights into the regulation relationship of miRNAs and plant hormones during the process of disease infection with P. brassicae.


Assuntos
Brassica rapa , MicroRNAs , Plasmodioforídeos , Brassica rapa/genética , Reguladores de Crescimento de Plantas , Transcriptoma , Resistência à Doença/genética , Plasmodioforídeos/fisiologia , MicroRNAs/genética , Doenças das Plantas/genética
10.
Nature ; 614(7947): 303-308, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36697825

RESUMO

Flowering plants have evolved numerous intraspecific and interspecific prezygotic reproductive barriers to prevent production of unfavourable offspring1. Within a species, self-incompatibility (SI) is a widely utilized mechanism that rejects self-pollen2,3 to avoid inbreeding depression. Interspecific barriers restrain breeding between species and often follow the SI × self-compatible (SC) rule, that is, interspecific pollen is unilaterally incompatible (UI) on SI pistils but unilaterally compatible (UC) on SC pistils1,4-6. The molecular mechanisms underlying SI, UI, SC and UC and their interconnections in the Brassicaceae remain unclear. Here we demonstrate that the SI pollen determinant S-locus cysteine-rich protein/S-locus protein 11 (SCR/SP11)2,3 or a signal from UI pollen binds to the SI female determinant S-locus receptor kinase (SRK)2,3, recruits FERONIA (FER)7-9 and activates FER-mediated reactive oxygen species production in SI stigmas10,11 to reject incompatible pollen. For compatible responses, diverged pollen coat protein B-class12-14 from SC and UC pollen differentially trigger nitric oxide, nitrosate FER to suppress reactive oxygen species in SC stigmas to facilitate pollen growth in an intraspecies-preferential manner, maintaining species integrity. Our results show that SRK and FER integrate mechanisms underlying intraspecific and interspecific barriers and offer paths to achieve distant breeding in Brassicaceae crops.


Assuntos
Brassicaceae , Flores , Hibridização Genética , Proteínas de Plantas , Polinização , Brassicaceae/genética , Brassicaceae/metabolismo , Depressão por Endogamia , Óxido Nítrico/metabolismo , Fosfotransferases/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Especificidade da Espécie , Flores/metabolismo , Autofertilização
11.
Fundam Res ; 3(6): 844-851, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38933009

RESUMO

Dissimilatory iron reduction (DIR) coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments. The role of DIR in organic matter (OM) mineralization, however, is still largely unknown in lake sediment environments. In this study, we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations. We found that in comparison with the domination of DIR (55%) for OM mineralization in Lake Xiaoxingkai, the contribution of methanogenesis was much higher (68%) in its connected lake (Lake Xingkai). The differences in rates and pathways of sediment OM mineralization between the two lakes were attributed to higher concentrations of carbonate associated iron oxides (Fecarb) in Lake Xiaoxingkai compared to Lake Xingkai (P = 0.002), due to better deposition mixing, more contributions of terrigenous detrital materials, and higher OM content in Lake Xiaoxingkai. Results of structural equation modeling showed that Fecarb and total iron content (TFe) regulated 25% of DIR in Lake Xiaoxingkai and 76% in Lake Xingkai, accompanied by a negative effect of TFe on methanogenesis in Lake Xingkai. The relative abundance and diversity of Fe-reducing bacteria were significantly different between the two lakes, and showed a weak effect on sediment OM mineralization. Our findings emphasize the role of iron minerals and geochemical characterizations in regulating rates and pathways of OM mineralization, and deepen the understanding of carbon cycling in lake sediments.

12.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142850

RESUMO

In this study, we identified a novel glossy mutant from Chinese cabbage, named SD369, and all wax monomers longer than 26 carbons were significantly decreased. Inheritance analysis revealed that the glossy trait of SD369 was controlled by a single recessive locus, BrWAX3. We fine-mapped the BrWAX3 locus to an interval of 161.82 kb on chromosome A09. According to the annotated genome of Brassica rapa, Bra024749 (BrCER60.A09), encoding a ß-ketoacyl-CoA synthase, was identified as the candidate gene. Expression analysis showed that BrCER60.A09 was significantly downregulated in all aerial organs of glossy plants. Subcellular localization indicated that the BrCER60.A09 protein functions in the endoplasmic reticulum. A 5567-bp insertion was identified in exon 1 of BrCER60.A09 in SD369, which lead to a premature stop codon, thus causing a loss of function of the BrCER60.A09 enzyme. Moreover, comparative transcriptome analysis revealed that the 'cutin, suberine, and wax biosynthesis' pathway was significantly enriched, and genes involved in this pathway were almost upregulated in glossy plants. Further, two functional markers, BrWAX3-InDel and BrWAX3-KASP1, were developed and validated. Overall, these results provide a new information for the cuticular wax biosynthesis and provide applicable markers for marker-assisted selection (MAS)-based breeding of Brassica rapa.


Assuntos
Brassica rapa , Brassica , Brassica/genética , Brassica/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , China , Códon sem Sentido/metabolismo , Coenzima A/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Ceras/metabolismo
13.
Front Plant Sci ; 13: 841328, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35251110

RESUMO

Flower color is an important trait in Brassica species. However, genes responsible for the dark yellow flower trait in Chinese cabbage have not been reported. In this study, we identified a dark-yellow-flowered Chinese cabbage line SD369. Genetic analysis indicated that the dark yellow flower trait in SD369 was controlled by a single recessive locus, Br-dyp1 (dark yellow petal color 1 in Brassica rapa). Using bulked segregant RNA sequencing and kompetitive allele-specific PCR assays, Br-dyp1 was fine-mapped to an interval of 53.6 kb on chromosome A09. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra037130 (BraA09.ZEP), which encodes a zeaxanthin epoxidase, was the most likely candidate gene for Br-dyp1. Carotenoid profile analysis suggested that Bra037130 (BraA09.ZEP) might participate in the epoxidation from zeaxanthin to violaxanthin. The 679 bp insertion in dark yellow petal caused premature stop codon, thus caused the loss-of-function of the enzyme zeaxanthin epoxidase (ZEP), which disturbed the carotenoid metabolism, and caused the increased accumulation of total carotenoid, and finally converted the flower color from yellow to dark yellow. Comparative transcriptome analysis also showed that the "carotenoid biosynthesis" pathway was significantly enriched, and genes involved in carotenoid degradation and abscisic acid biosynthesis and metabolism were significantly downregulated. Furthermore, we developed and validated the functional marker Br-dyp1-InDel for Br-dyp1. Overall, these results provide insight into the molecular basis of carotenoid-based flower coloration in B. rapa and reveal valuable information for marker-assisted selection breeding in Chinese cabbage.

14.
Sci China Life Sci ; 65(1): 1-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34705222

RESUMO

Apart from their primordial role in protein synthesis, tRNAs can be cleaved to produce tRNA-derived small RNAs (tsRNAs). The biological functions of tsRNAs in plants remain largely unknown. In this study, we developed RtcB ligation-based small RNA (sRNA) sequencing, a method that captures and distinguishes between 3'-2',3'-cyclic-phosphate (cP)/phosphate (P)-terminated sRNAs and 3'-OH-terminated sRNAs, and profiled 5' tsRNAs and 5' tRNA halves in Arabidopsis thaliana. We found that Arabidopsis 5' tsRNAs and 5' tRNA halves predominantly contain a cP at the 3' end and require S-like RNase 1 (RNS1) and RNS3 for their production. One of the most abundant 5' tsRNAs, 5' tsR-Ala, by associating with AGO1, negatively regulates Cytochrome P450 71A13 (CYP71A13) expression and camalexin biosynthesis to repress anti-fungal defense. Interestingly, 5' tsR-Ala is downregulated upon fungal infection. Our study provides a global view of 5' tsRNAs and 5' tRNA halves in Arabidopsis and unravels an important role of a 5' tsRNA in regulating anti-fungal defense.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Pequeno RNA não Traduzido/fisiologia , RNA de Transferência/metabolismo , Arabidopsis/metabolismo , Botrytis , Pequeno RNA não Traduzido/química , Pequeno RNA não Traduzido/metabolismo , Análise de Sequência de RNA
15.
Theor Appl Genet ; 135(2): 693-707, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34766198

RESUMO

KEY MESSAGE: Map-based cloning was used to identify the BrWAX2 gene, which was involved in the cuticular wax biosynthesis. The malfunction of BrWAX2 together with other reduced expression of genes in alkane-forming pathway caused the glossy phenotype. Cuticular wax covering the outer plant surface plays various roles in protecting against biotic and abiotic stresses. Wax-less mutant shows glossy in stem and leaf surface and plays important roles in enriching Chinese cabbage germplasm resources for breeding brilliant green varieties. However, genes responsible for the glossy trait in Chinese cabbage are rarely reported. In this study, we identified a glossy Chinese cabbage line Y1211-1. Genetic analysis indicated that the glossy trait in Y1211-1 was controlled by a single recessive locus, BrWAX2 (Brassica rapa WAX 2). Using bulked segregant sequencing (BSA-Seq) and kompetitive allele-specific PCR (KASP) assays, BrWAX2 was fine-mapped to an interval of 100.78 kb. Functional annotation analysis, expression analysis, and sequence variation analysis revealed that Bra032670, homologous to CER1 in Arabidopsis, was the most likely candidate gene for BrWAX2. The gene Bra032670 was absent in glossy mutant. Cuticular wax composition analysis and RNA-Seq analysis suggested that the absence of BrWAX2 together with the decreased expression of other genes in alkane-forming pathway reduced the wax amount and caused the glossy phenotype. Furthermore, we developed and validated the functional marker BrWAX2-sp for BrWAX2. Overall, these results provide insight into the molecular mechanism underlying cuticular wax biosynthesis and reveal valuable information for marker-assisted selection (MAS) breeding in Chinese cabbage.


Assuntos
Brassica rapa , Brassica , Brassica/genética , Brassica rapa/genética , China , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Melhoramento Vegetal
16.
Plant Cell Rep ; 40(12): 2421-2434, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34542669

RESUMO

KEY MESSAGE: Cytological observations of chromosome pairing showed that evolutionarily genome duplication might reshape non-homologous pairing during meiosis in haploid B. rapa. A vast number of flowering plants have evolutionarily undergone whole genome duplication (WGD) event. Typically, Brassica rapa is currently considered as an evolutionary mesohexaploid, which has more complicated genomic constitution among flowering plants. In this study, we demonstrated chromosome behaviors in haploid B. rapa to understand how meiosis proceeds in presence of a single homolog. The findings showed that a diploid-like chromosome pairing was generally adapted during meiosis in haploid B. rapa. Non-homologous chromosomes in haploid cells paired at a high-frequency at metaphase I, over 50% of examined meiocytes showed at least three pairs of bivalents then equally segregated at anaphase I during meiosis. The fluorescence immunostaining showed that the cytoskeletal configurations were mostly well-organized during meiosis. Moreover, the expressed genes identified at meiosis in floral development was rather similar between haploid and diploid B. rapa, especially the expression of known hallmark genes pivotal to chromosome synapsis and homologous recombination were mostly in haploid B. rapa. Whole-genome duplication evolutionarily homology of genomic segments might be an important reason for this phenomenon, which would reshape the first division course of meiosis and influence pollen development in plants.


Assuntos
Brassica rapa/genética , Pareamento Cromossômico , Meiose , Pólen , Cromossomos de Plantas , Regulação da Expressão Gênica de Plantas , Haploidia , Recombinação Homóloga , Pólen/genética , Pólen/fisiologia
18.
Front Plant Sci ; 12: 650252, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34447397

RESUMO

Clubroot, caused by the soil-borne protist Plasmodiophora brassicae, is one of the most destructive diseases of Chinese cabbage worldwide. However, the clubroot resistance mechanisms remain unclear. In this study, in both clubroot-resistant (DH40R) and clubroot-susceptible (DH199S) Chinese cabbage lines, the primary (root hair infection) and secondary (cortical infection) infection stages started 2 and 5 days after inoculation (dai), respectively. With the extension of the infection time, cortical infection was blocked and complete P. brassica resistance was observed in DH40R, while disease scales of 1, 2, and 3 were observed at 8, 13, and 22 dai in DH199S. Transcriptome analysis at 0, 2, 5, 8, 13, and 22 dai identified 5,750 relative DEGs (rDEGs) between DH40R and DH199S. The results indicated that genes associated with auxin, PR, disease resistance proteins, oxidative stress, and WRKY and MYB transcription factors were involved in clubroot resistance regulation. In addition, weighted gene coexpression network analysis (WGCNA) identified three of the modules whose functions were highly associated with clubroot-resistant, including ten hub genes related to clubroot resistance (ARF2, EDR1, LOX4, NHL3, NHL13, NAC29, two AOP1, EARLI 1, and POD56). These results provide valuable information for better understanding the molecular regulatory mechanism of Chinese cabbage clubroot resistance.

19.
Front Plant Sci ; 12: 643579, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34149748

RESUMO

Along with being important pigments that determining the flower color in many plants, anthocyanins also perform crucial functions that attract pollinators and reduce abiotic stresses. Purple and white are two different colors of radish petals. In this study, two cDNA libraries constructed with purple and white petal plants were sequenced for transcriptome profiling. Transcriptome results implied that the expression level of the genes participating in the anthocyanin biosynthetic pathway was commonly higher in the purple petals than that in the white petals. In particular, two genes, F3'H and DFR, had a significantly higher expression pattern in the purple petals, suggesting the important roles these genes playing in radish petal coloration. BSA-seq aided-Next Generation Sequencing of two DNA pools revealed that the radish purple petal gene (RsPP) was located on chromosome 7. With additional genotyping of 617 F2 population plants, the RsPP was further confined within a region of 93.23 kb. Transcriptome and Sanger sequencing analysis further helped identify the target gene, Rs392880. Rs392880 is a homologous gene to F3'H, a key gene in the anthocyanin biosynthetic pathway. These results will aid in elucidating the molecular mechanism of plant petal coloration and developing strategies to modify flower color through genetic transformation.

20.
Front Plant Sci ; 12: 646222, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025693

RESUMO

Flower color is an important trait in plants. However, genes responsible for the white flower trait in Chinese cabbage are rarely reported. In this study, we constructed an F2 population derived from the Y640-288 (white flower) and Y641-87 (yellow flower) lines for the fine mapping of the white flower gene BrWF3 in Chinese cabbage. Genetic analysis indicated that BrWF3 was controlled by a single recessive gene. Using BSA-seq and KASP assays, BrWF3 was fine-mapped to an interval of 105.6 kb. Functional annotation, expression profiling, and sequence variation analyses confirmed that the AtPES2 homolog, Bra032957, was the most likely candidate gene for BrWF3. Carotenoid profiles and transmission electron microscopy analysis suggested that BrWF3 might participate in the production of xanthophyll esters (particularly violaxanthin esters), which in turn disrupt chromoplast development and the formation of plastoglobules (PGs). A SNP deletion in the third exon of BrWF3 caused the loss of protein function, and interfered with the normal assembly of PGs, which was associated with reduced expression levels of genes involved in carotenoid metabolism. Furthermore, we developed and validated the functional marker TXBH83 for BrWF3. Our results provide insight into the molecular mechanism underlying flower color pigmentation and reveal valuable information for marker-assisted selection (MAS) breeding in Chinese cabbage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA