Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 29(1): e202202677, 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36250277

RESUMO

Tuning the redox potential of commonly available photocatalyst to improve the catalytic performance or expand its scope for challenging synthetic conversions is an ongoing demand in synthetic chemistry. Herein, the excited state properties and redox potential of commercially available [Ru(bpy)3 ]2+ photocatalyst were tuned by modifying the structure of the bipyridine ligands with electron-donating/withdrawing units. The visible-light-mediated photoredox phosphorylation of tertiary aliphatic amines was demonstrated under mild conditions. A series of cross-dehydrogenative coupling reactions were performed employing the RuII complexes as photocatalyst giving the corresponding α-aminophosphinoxides and α-aminophosphonates via carbon-phosphorus (C-P) bond formation.

2.
Angew Chem Int Ed Engl ; 61(23): e202202098, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35258153

RESUMO

Quantifying the content of metal-based anticancer drugs within single cancer cells remains a challenge. Here, we used single-cell inductively coupled plasma mass spectrometry to study the uptake and retention of mononuclear (Ir1) and dinuclear (Ir2) IrIII photoredox catalysts. This method allowed rapid and precise quantification of the drug in individual cancer cells. Importantly, Ir2 showed a significant synergism but not an additive effect for NAD(P)H photocatalytic oxidation. The lysosome-targeting Ir2 showed low dark toxicity in vitro and in vivo. Ir2 exhibited high photocatalytic therapeutic efficiency at 525 nm with an excellent photo-index in vitro and in tumor-bearing mice model. Interestingly, the photocatalytic anticancer profile of the dinuclear Ir2 was much better than the mononuclear Ir1, indicating for the first time that dinuclear metal-based photocatalysts can be applied for photocatalytic anticancer treatment.


Assuntos
Antineoplásicos , Complexos de Coordenação , Neoplasias , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Irídio/química , Lisossomos , Camundongos
3.
Adv Sci (Weinh) ; 9(12): e2104277, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35191226

RESUMO

Solid-state lithium metal batteries (SLMBs) are attracting enormous attention due to their enhanced safety and high theoretical energy density. However, the alkali lithium with high reducibility can react with the solid-state electrolytes resulting in the inferior cycle lifespan. Herein, inspired by the idea of interface design, the 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl) imide as an initiator to generate an artificial protective layer in polymer electrolyte is selected. Time-of-flight secondary ion mass spectrometry and X-ray photoelectron spectroscopy reveal the stable solid electrolyte interface (SEI) is in situ formed between the electrolyte/Li interface. Scanning electron microscopy (SEM) images demonstrate that the constructed SEI can promote homogeneous Li deposition. As a result, the Li/Li symmetrical cells enable stable cycle ultralong-term for over 4500 h. Moreover, the as-prepared LiFePO4 /Li SLMBs exhibit an impressive ultra-long cycle lifespan over 1300 cycles at 1 C, as well as 1600 cycles at 0.5 C with a capacity retention ratio over 80%. This work offers an effective strategy for the construction of the stable electrolyte/Li interface, paving the way for the rapid development of long lifespan SLMBs.

4.
Chem Commun (Camb) ; 57(40): 4902-4905, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-33870972

RESUMO

A bromine-substituted thermally activated delayed fluorescent (TADF) molecule AQCzBr2 is designed with both small singlet-triplet splitting (ΔEST) and increased spin-orbit coupling (SOC) to boost intersystem crossing (ISC) for singlet oxygen generation. AQCzBr2 nanoparticles (NPs) demonstrate high productivity of singlet oxygen generation (ΦΔ = 0.91) which allows highly efficient photodynamic therapy toward cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA