Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Cell Biol Toxicol ; 40(1): 34, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38769159

RESUMO

Anorectal malformation (ARM) is a prevalent early pregnancy digestive tract anomaly. The intricate anatomy of the embryonic cloaca region makes it challenging for traditional high-throughput sequencing methods to capture location-specific information. Spatial transcriptomics was used to sequence libraries of frozen sections from embryonic rats at gestational days (GD) 14 to 16, covering both normal and ARM cases. Bioinformatics analyses and predictions were performed using methods such as WGCNA, GSEA, and PROGENy. Immunofluorescence staining was used to verify gene expression levels. Gene expression data was obtained with anatomical annotations of clusters, focusing on the cloaca region's location-specific traits. WGCNA revealed gene modules linked to normal and ARM cloacal anatomy development, with cooperation between modules on GD14 and GD15. Differential gene expression profiles and functional enrichment were presented. Notably, protein levels of Pcsk9, Hmgb2, and Sod1 were found to be downregulated in the GD15 ARM hindgut. The PROGENy algorithm predicted the activity and interplay of common signaling pathways in embryonic sections, highlighting their synergistic and complementary effects. A competing endogenous RNA (ceRNA) regulatory network was constructed from whole transcriptome data. Spatial transcriptomics provided location-specific cloaca region gene expression. Diverse bioinformatics analyses deepened our understanding of ARM's molecular interactions, guiding future research and providing insights into gene regulation in ARM development.


Assuntos
Malformações Anorretais , Redes Reguladoras de Genes , Transdução de Sinais , Transcriptoma , Animais , Malformações Anorretais/genética , Malformações Anorretais/metabolismo , Malformações Anorretais/embriologia , Transdução de Sinais/genética , Transcriptoma/genética , Ratos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Gravidez , Embrião de Mamíferos/metabolismo , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Ratos Sprague-Dawley , Cloaca/embriologia , Cloaca/metabolismo
2.
Cell Prolif ; 57(7): e13618, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523594

RESUMO

Anorectal malformation (ARM), a common congenital anomaly of the digestive tract, is a result of insufficient elongation of the urorectal septum. The cytoplasmic protein Receptor of Activated C-Kinase 1 (Rack1) is involved in embryonic neural development; however, its role in embryonic digestive tract development and ARM formation is unexplored. Our study explored the hindgut development and cell death mechanisms in ARM-affected rats using spatial transcriptome analysis. We induced ARM in rats by administering ethylenethiourea via gavage on gestational day (GD) 10. On GDs 14-16, embryos from both normal and ARM groups underwent spatial transcriptome sequencing, which identified key genes and signalling pathways. Rack1 exhibited significant interactions among differentially expressed genes on GDs 15 and 16. Reduced Rack1 expression in the ARM-affected hindgut, verified by Rack1 silencing in intestinal epithelial cells, led to increased P38 phosphorylation and activation of the MAPK signalling pathway. The suppression of this pathway downregulated Nqo1 and Gpx4 expression, resulting in elevated intracellular levels of ferrous ions, reactive oxygen species (ROS) and lipid peroxides. Downregulation of Gpx4 expression in the ARM hindgut, coupled with Rack1 co-localisation and consistent mitochondrial morphology, indicated ferroptosis. In summary, Rack1, acting as a hub gene, modulates ferrous ions, lipid peroxides, and ROS via the P38-MAPK/Nqo1/Gpx4 axis. This modulation induces ferroptosis in intestinal epithelial cells, potentially influencing hindgut development during ARM onset.


Assuntos
Malformações Anorretais , Ferroptose , Receptores de Quinase C Ativada , Transcriptoma , Animais , Receptores de Quinase C Ativada/metabolismo , Receptores de Quinase C Ativada/genética , Ferroptose/genética , Ferroptose/efeitos dos fármacos , Ratos , Malformações Anorretais/genética , Malformações Anorretais/metabolismo , Malformações Anorretais/patologia , Feminino , Espécies Reativas de Oxigênio/metabolismo , Ratos Sprague-Dawley , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Etilenotioureia , Transdução de Sinais
3.
Cell Biol Toxicol ; 39(4): 1593-1610, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-35930101

RESUMO

Anorectal malformations (ARMs) are common birth defects involving congenital structural anomalies of the gastrointestinal tract. As an important component of non-coding RNAs, circular RNAs (circRNAs) widely participate in the digestive system development; however, the specific molecular mechanism of their involvement in ARM occurrence remains obscure. Herein, we generated rat models of ARMs induced by ethylene thiourea. A novel circRNA (circJag1) was screened and identified by RNA-Seq, which is remarkably upregulated in hindgut tissues of ARM rat embryos. In vivo experiments, colocation analysis via fluorescence in situ hybridization, and immunofluorescence further demonstrated that the disordered circJag1/miR-137-3p/Sox9 expression caused a spatiotemporal imbalance in the urorectal septum (URS) of ARMs. In vitro, functional assays confirmed that circJag1 upregulation resulted in the degradation of nuclear ß-catenin, C-myc, and Cyclin D1 in rat intestinal epithelial cells, as well as the promotion of apoptosis and suppression of cell proliferation. Mechanistically, dual-luciferase reporter assay and RNA immunoprecipitation assay indicated that circJag1 acted as a miR-137-3p sponge, thereby inhibiting its repressive effect on its target Sox9. Further experiments showed that a loss of Sox9 abolished the circJag1-mediated increase in apoptosis. In conclusion, aberrantly high circJag1 expression promotes epithelial apoptosis by suppressing the canonical Wnt/ß-catenin pathway via the miR-137-3p/Sox9 axis, which leads to fusion failure of the URS and cloacal membrane, and eventually contributed to ARMs. Our achievements might boost the comprehension of ARM pathogenesis and could provide a novel candidate target for the development of therapies for ARMs to complement surgical treatment.


Assuntos
Malformações Anorretais , Etilenotioureia , MicroRNAs , Ratos , Animais , beta Catenina/genética , beta Catenina/metabolismo , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Apoptose/genética , Etilenos , Via de Sinalização Wnt/genética , Proliferação de Células/genética , Linhagem Celular Tumoral
4.
Ann N Y Acad Sci ; 1518(1): 315-327, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36328940

RESUMO

Anorectal malformations (ARMs) are the most common gastrointestinal malformations. miR-141-3p was obtained from whole-transcriptome sequencing, and Ub domain-containing protein 2 (Ubtd2) was predicted as the target gene. An ARM rat model was induced using ethylenethiourea. Fluorescence in situ hybridization and immunofluorescence were used to detect the spatiotemporal expression of miR-141-3p and Ubtd2, respectively. A dual-luciferase reporter assay confirmed their targeting relationship, and cell proliferation and apoptosis were investigated after transfection in the intestinal epithelium (IEC-6). Additionally, western blotting and co-immunoprecipitation were used to examine the protein levels and the endogenous binding relationship. miR-141-3p was downregulated in the ARM group, whereas Ubtd2 increased and colocalized with TUNEL-positive cells. After miR-141-3p inhibition, protein expression of USP5 and ß-catenin was affected via Ubtd2, and USP5 could bind to both Ubtd2 and ß-catenin. Flow cytometry analysis and caspase 3/7 staining demonstrated that downregulated miR-141-3p promoted cell apoptosis through Ubtd2. In summary, targeting Ubtd2 decreased in miR-141-3p and promoted apoptosis of intestinal epithelium and regulated ß-catenin expression. This may cause aberrant apoptosis during hindgut development and mediate the imbalance of ß-catenin signaling in the cloaca, further affecting the occurrence of ARMs.


Assuntos
Malformações Anorretais , MicroRNAs , Ubiquitinas , beta Catenina , Animais , Ratos , Malformações Anorretais/genética , Apoptose/genética , beta Catenina/genética , beta Catenina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Via de Sinalização Wnt , Ubiquitinas/genética , Ubiquitinas/metabolismo
5.
Reprod Sci ; 29(3): 750-760, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35075613

RESUMO

Spontaneous miscarriage is a common pregnancy complication. Multiple etiologies have been proposed such as genetic aberrations, endocrinology disorder, and immunologic derangement; however, the relevance of circulating lipidomes to the specific condition remains unclear. In the present study, lipidomics profiling was examined on serum of women with spontaneous miscarriage after in vitro fertilization and embryo transfer (IVF-ET). Screening and analysis of differential lipid levels were conducted using a machine learning approach to verify the stability and validity of potential serum biomarkers. Seven lipid species presented significant differences between the abortion and term birth patients, including three types of sphingomyelins (SMs), two types of diglycerides (DGs), one phosphatidylcholine (PC), and one lysophosphatidylethanolamine (LPE). All the SMs presented with a fold change of > 1, while both the PC and LPE had a fold change of < 1. The DG containing two saturated fatty acyl chains was decreased, but that containing two unsaturated fatty acyl chains was increased in the miscarriage group compared to the control group. This study reveals the relevance of lipid profiles to spontaneous abortion after IVF-ET, providing potential biomarkers and therapeutic targets for the specific clinical scenario.


Assuntos
Aborto Espontâneo , Biomarcadores/sangue , Transferência Embrionária , Fertilização in vitro , Lipidômica/métodos , Aprendizado de Máquina , Adulto , Feminino , Humanos , Gravidez
6.
Exp Cell Res ; 402(2): 112574, 2021 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794264

RESUMO

Congenital anorectal malformations (ARMs) are among the most prominent deformities of the gastrointestinal tract; however, their precise aetiology remains obscure. Immunohistochemistry demonstrated that, in the ARM group, the PPPDE1-positive cells were widely distributed in the hindgut epithelial tissue from GD13 to GD16. Immunofluorescence revealed that most TUNEL-, Bax-, and Cytochrome C (Cyt C)-positive cells overlapped with PPPDE1-positive cells in the urorectal septum (URS). Western blotting and quantitative real-time RT-PCR revealed that PPPDE1 levels were significantly higher in the ARM group from GD13 to GD14 (p < 0.05). IEC-6 cells were transfected with PPPDE1 overexpression plasmid/NC (negative control) or si-PPPDE1/si-NC. Flow cytometry analysis and CCK-8 assay (used to detect apoptosis and proliferation, respectively), as well as western blotting, showed that the levels of PPPDE1 were positively correlated with the pro-apoptotic molecules Bax and Cyt C. Accordingly, aberrantly high expression of PPPDE1 caused a spatiotemporal imbalance in foetal rats with ARMs during hindgut development. Therefore, the upregulation of PPPDE1 may promote epithelial apoptosis and reduce proliferation in the hindgut via the mitochondrial apoptotic pathway. This could affect the fusion of the URS and cloacal membrane, ultimately inhibiting the hindgut development and resulting in ARMs.


Assuntos
Malformações Anorretais/genética , Carbono-Nitrogênio Liases/genética , Trato Gastrointestinal/metabolismo , Proteína X Associada a bcl-2/genética , Animais , Malformações Anorretais/patologia , Apoptose/genética , Proliferação de Células/genética , Citocromos c/genética , Embrião de Mamíferos , Desenvolvimento Fetal/genética , Trato Gastrointestinal/crescimento & desenvolvimento , Trato Gastrointestinal/patologia , Humanos , Mitocôndrias/genética , Ratos , Transdução de Sinais/genética , Ativação Transcricional/genética
7.
Front Genet ; 12: 605015, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33927745

RESUMO

Anorectal malformations (ARMs) are among the most common congenital terminal digestive tract malformations. Circular RNAs (circRNAs), a novel type of endogenous non-coding RNAs, play roles in the development of the digestive system; however, their contributions to the pathogenesis of ARMs are not well-established. In this study, we explored the mechanism underlying ethylenethiourea (ETU)-induced ARMs by profiling circRNA expression via RNA-seq and constructing a regulatory circRNA-miRNA-mRNA network. Nine pregnant rats were gavage-fed a single dose of 125 mg/kg 1% ETU (ARM group) on gestational day 10 (GD10), and another 9 pregnant rats received a similar dose of saline (normal group) as a control. Embryos were obtained by cesarean section on the key time-points of anorectal development (GD14, GD15, and GD16). Hindgut samples isolated from the fetuses were evaluated by high-throughput sequencing and differentially expressed circRNAs were validated by reverse transcription-quantitative polymerase chain reaction, agarose gel electrophoresis, and Sanger cloning and sequencing. A total of 18295 circRNAs were identified in the normal and ARM groups. Based on the 425 differentially expressed circRNAs (|Fc| > 2, p < 0.05), circRNA-miRNA and miRNA-mRNA pairs were predicted using miREAP, miRanda, and TargetScan. A total of 55 circRNAs (14 up- and 41 downregulated in the ARM group compared to the normal group) were predicted to bind to 195 miRNAs and 947 mRNAs. Competing endogenous RNA networks and a Kyoto Encyclopedia of Genes and Genomes analysis revealed that novel_circ_001042 had the greatest connectivity and was closely related to ARM-associated signaling pathways, such as the Wingless Type MMTV integration site family, mitogen-activated protein kinase, and transforming growth factor-ß pathways. These results provide original insight into the roles of circRNAs in ARMs and provide a valuable resource for further analyses of molecular mechanisms and signaling networks.

8.
Cell Prolif ; 53(11): e12916, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33058377

RESUMO

Healing after mammalian skin injury involves the interaction between numerous cellular constituents and regulatory factors, which together form three overlapping phases: an inflammatory response, a proliferation phase and a remodelling phase. Any slight variation in these three stages can substantially alter the healing process and resultant production of scars. Of particular significance are the mechanisms responsible for the scar-free phenomenon observed in the foetus. Uncovering such mechanisms would offer great expectations in the treatment of scars and therefore represents an important area of investigation. In this review, we provide a comprehensive summary of studies on injury-induced skin regeneration within the foetus. The information contained in these studies provides an opportunity for new insights into the treatment of clinical scars based on the cellular and molecular processes involved.


Assuntos
Cicatriz/fisiopatologia , Pele/fisiopatologia , Cicatrização , Adulto , Animais , Cicatriz/patologia , Feto/patologia , Feto/fisiopatologia , Fibroblastos/patologia , Humanos , Queratinócitos/patologia , Lesões Pré-Natais/patologia , Lesões Pré-Natais/fisiopatologia , Pele/embriologia , Pele/lesões , Pele/patologia
9.
World J Stem Cells ; 12(5): 368-380, 2020 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-32547685

RESUMO

BACKGROUND: Intrauterine adhesion (IUA) can cause serious damage to women's reproductive health, yet current treatment methods are difficult to achieve satisfactory results. In our previous studies, we demonstrated that menstrual-derived stromal stem cells (MenSCs), with high proliferative capacity and self-renewal ability, have a powerful therapeutic effect in patients with severe IUA. However, safety assessment of MenSCs transplantation is essential for its further application. AIM: To evaluate the short-, medium-, and long-term biosafety of MenSCs via intrauterine transplantation in a rat model of IUA, with a focus on toxicity and tumorigenicity. METHODS: MenSCs were injected into the sub-serosal layer of the uterus in an IUA rat model, for 3 d, 3 mo, and 6 mo separately, to monitor the corresponding acute, sub-chronic, and chronic effects. Healthy rats of the same age served as negative controls. Toxicity effects were evaluated by body weight, organ weight, histopathology, hematology, and biochemistry tests. Tumorigenicity of MenSCs was investigated in Balb/c-nu mice in vivo and by colony formation assays in vitro. RESULTS: Compared with the same week-old control group, all of the IUA rats receiving MenSC transplantation demonstrated no obvious changes in body weight, main organ weight, or blood cell composition during the acute, sub-chronic, and chronic observation periods. At the same time, serum biochemical tests showed no adverse effects on metabolism or liver and kidney function. After 4 wk of subcutaneous injection of MenSCs in Balb/c-nu nude mice, no tumor formation or cell metastasis was observed. Moreover, there was no tumor colony formation of MenSCs during soft agar culture in vitro. CONCLUSION: There is no acute, sub-chronic, or chronic poisoning, infection, tumorigenesis, or endometriosis in rats with IUA after MenSC transplantation. The above results suggest that intrauterine transplantation of MenSCs is safe for endometrial treatment.

10.
CNS Neurosci Ther ; 26(9): 902-912, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32329577

RESUMO

AIMS: Failure of neural tube closure resulting from excessive apoptosis leads to neural tube defects (NTDs). NADPH oxidase 4 (NOX4) is a critical mediator of cell growth and death, yet its role in NTDs has never been characterized. NOX4 is a potential target of miR-322, and we have previously demonstrated that miR-322 was involved in high glucose-induced NTDs. In this study, we investigated the effect of NOX4 on the embryonic neuroepithelium in NTDs and reveal a new regulatory mechanism for miR-322 that disrupts neurulation by ameliorating cell apoptosis. METHODS: All-trans-retinoic acid (ATRA)-induced mouse model was utilized to study NTDs. RNA pull-down and dual-luciferase reporter assays were used to confirm the interaction between NOX4 and miR-322. In mouse neural stem cells and whole-embryo culture, Western blot and TUNEL were carried out to investigate the effects of miR-322 and NOX4 on neuroepithelium apoptosis in NTD formation. RESULTS: NOX4, as a novel target of miR-322, was upregulated in ATRA-induced mouse model of NTDs. In mouse neural stem cells, the expression of NOX4 was inhibited by miR-322; still further, NOX4-triggered apoptosis was also suppressed by miR-322. Moreover, in whole-embryo culture, injection of the miR-322 mimic into the amniotic cavity attenuated cell apoptosis in NTD formation by silencing NOX4. CONCLUSION: miR-322/NOX4 plays a crucial role in apoptosis-induced NTD formation, which may provide a new understanding of the mechanism of embryonic NTDs and a basis for potential therapeutic target against NTDs.


Assuntos
Apoptose/fisiologia , Inativação Gênica/fisiologia , MicroRNAs/administração & dosagem , NADPH Oxidase 4/antagonistas & inibidores , NADPH Oxidase 4/biossíntese , Defeitos do Tubo Neural/enzimologia , Animais , Células Cultivadas , Desenvolvimento Embrionário/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , NADPH Oxidase 4/genética , Defeitos do Tubo Neural/diagnóstico por imagem , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/terapia , Resultado do Tratamento
11.
Biomed Pharmacother ; 127: 110117, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32244197

RESUMO

Anorectal malformations (ARMs) is one of the most common gastrointestinal anomalies. Previous research revealed that miR-92a-2-5p was upregulated in ARMs. However, the underlying roles remains unknown. The current study was to further investigate the spatiotemporal expression patterns of miR-92a-2-5p and its target gene protein kinase C alpha (PRKCA) predicted by bioinformatic method, and to explore their potential functions in anorectal malformations (ARMs). Rat models with ethylenethiourea-induced ARMs were made for subsequent experiments. Direct target relationship between miR-92a-2-5p and PRKCA was validated using a luciferase reporter assay. The spatiotemporal expression pattern of miR-92a-2-5p was evaluated using fluorescence in situ hybridization (FISH), while the expression of PRKCA was revealed by immunohistochemical staining and western blotting. IEC-6 cells were transfected with mimics/mimics NC (Negative control)/inhibitor/inhibitor NC of miR-92a-2-5p or si-PRKCA/si-PRKCA NC, respectively. Then the downstream molecules of miR-92a-2-5p, PRKCA and ß-catenin, were subsequently detected. Meanwhile, apoptosis and viability assays were measured. Dual luciferase assay confirmed the direct regulatory relationship between miR-92a-2-5p and PRKCA. FISH revealed that miR-92a-2-5p was expressed with a higher level in ARMs fetuses. Further analyses of PRKCA showed lower protein expression level in ARMs group, which was opposite to miR-92a-2-5p. In vitro experiments revealed that overexpression of miR-92a-2-5p or knockdown of PRKCA can down-regulate PRKCA, up-regulate and facilitate nuclear localization of ß-catenin, increase apoptosis and decrease proliferation of IEC-6. Taken together, these findings suggest that aberrantly high expression of miR-92a-2-5p potentially contribute to ARMs by inhibiting proliferation and enhancing apoptosis of intestinal cells via negatively regulating PRKCA/ß-catenin.


Assuntos
Malformações Anorretais/fisiopatologia , Apoptose/fisiologia , Proliferação de Células/fisiologia , MicroRNAs/fisiologia , beta Catenina/biossíntese , Animais , Malformações Anorretais/induzido quimicamente , Etilenotioureia , Feminino , MicroRNAs/biossíntese , Proteína Quinase C-alfa/biossíntese , Ratos , Regulação para Cima
12.
Neural Regen Res ; 15(4): 705-711, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31638095

RESUMO

Leukemia inhibitory factor receptor (LIFR), as a neuroregulatory cytokine receptor, generally shows a neuroprotective effect in central nervous system injuries. In this study, to understand the effect of LIFR on pathogenesis of neural tube defects, we explored spatiotemporal expression of LIFR at different stages of fetal development in normal and neural tube defect embryos. Spina bifida aperta was induced with all-trans retinoic acid on embryonic day 10 in rats, and the spatiotemporal expression of LIFR was investigated in spina bifida aperta rats and healthy rats from embryonic day 11 to 17. Real time-polymerase chain reaction and western blot assay were used to examine mRNA and protein expression of LIFR in healthy control and neural tube defect embryos. Results of the animal experiment demonstrated that expression of LIFR protein and mRNA in the spinal cords of normal rat embryos increased with embryonic development. LIFR was significantly downregulated in the spinal cords of spina bifida aperta rats compared with healthy rats from embryonic days 11 to 17. Immunohistochemical staining showed that the expression of LIFR in placenta and spinal cord in spina bifida aperta rat embryos was decreased compared with that in control embryos at embryonic day 15. Results from human embryo specimens showed that LIFR mRNA expression was significantly down-regulated in spinal cords of human fetuses with neural tube defects compared with normal controls at a gestational age of 24 to 33 weeks. The results were consistent with the down-regulation of LIFR in the animal experiments. Our study revealed spatiotemporal changes in expression of LIFR during embryonic neurulation. Thus, LIFR might play a specific role in neural tube development. All animal and human experimental procedures were approved by the Medical Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS106K) on February 25, 2016.

13.
Cell Death Differ ; 26(8): 1396-1410, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30323271

RESUMO

In mammals, urorectal development starts at early embryonic stage, defective urorectal development results in anorectal malformations, which are common congenital developmental defects of the anus and the urethra in newborns. The etiology and embryology of the defects are still largely unknown. Platelet-derived growth factor receptor alpha (Pdgfra) is a cell surface receptor tyrosine kinase, upon binding to its ligands (Pdgfa-d), mediates intracellular signaling and regulates embryonic development. The expression of Pdgfra is tightly regulated in the developing urorectal mesenchyme, and its dysregulation is associated with urorectal defects in animals with urorectal defects. Knockout of Pdgfra induces early embryo lethality which precludes investigation of Pdgfra in urorectal development. To address the temporal requirement of Pdgfra in urorectal development, we conditionally deleted Pdgfra in Pdgfra-expressing tissues using a tamoxifen inducible Cre-loxP approach in mice, examined the urorectal development in Pdgfra conditional knockout (Pdgfra-cKO) embryos. We showed that conditional deletion of Pdgfra in Pdgfra-expressing tissues at E10-E11 caused cloaca septation defect, anteriorly displaced anus, defective urogenital folds development and abnormal urethra tubularization in both male and female mice. Furthermore, we showed that Pdgfra was required for the survival of urorectal mesenchyme, deletion of Pdgfra caused apoptosis in the peri-cloacal, the peri-urethra and the urorectal septum mesenchyme of Pdgfra-cKO mutants, associated with an induction of p53, Ndrg1 and activation of caspase-3 in Pdgfra-cKO embryos. In conclusion, Pdgfra is required for the development and survival of the urorectal mesenchyme in embryo, dysregulated Pdgfra signaling induced urorectal defects in mice resembling human congenital diseases of anorectal malformations and hypospadias. Perturbation of PDGFRA signaling may contribute to anorectal malformations and hypospadias in human.


Assuntos
Apoptose , Mesoderma/metabolismo , Mesoderma/patologia , Receptores do Fator de Crescimento Derivado de Plaquetas/metabolismo , Anormalidades Urogenitais/metabolismo , Anormalidades Urogenitais/patologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Ratos , Ratos Wistar , Receptores do Fator de Crescimento Derivado de Plaquetas/deficiência
14.
Neural Regen Res ; 14(2): 361-368, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30531021

RESUMO

O6-methylguanine DNA methyltransferase (MGMT), a DNA repair enzyme, has been reported in some congenital malformations, but it is less frequently reported in neural tube defects. This study investigated MGMT mRNA expression and methylation levels in the early embryo and in different embryonic stages, as well as the relationship between MGMT and neural tube defects. Spina bifida aperta was induced in rats by a single intragastric administration of all-trans retinoic acid on embryonic day (E) 10, whereas normal control rats received the same amount of olive oil on the same embryonic day. DNA damage was assessed by detecting γ-H2A.X in spina bifida aperta rats. Real time-polymerase chain reaction was used to examine mRNA expression of MGMT in normal control and spina bifida aperta rats. In normal controls, the MGMT mRNA expression decreased with increasing embryonic days, and was remarkably reduced from E11 to E14, reaching a minimum at E18. In the spina bifida aperta model, γ-H2A.X protein expression was increased, and mRNA expression of MGMT was markedly decreased on E14, E16, and E18. Bisulfite sequencing polymerase chain reaction for MGMT promoter methylation demonstrated that almost all CpG sites in the MGMT promoter remained unmethylated in both spina bifida aperta rats and normal controls, and there was no significant difference in methylation level between the two groups on either E14 or E18. Our results show that DNA damage occurs in spina bifida aperta rats. The mRNA expression of MGMT is downregulated, and this downregulation is independent of promoter DNA methylation.

15.
Int J Mol Med ; 42(5): 2363-2372, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30106085

RESUMO

Anorectal malformations (ARMs) are one of the most common congenital malformations of the digestive tract; however, the pathogenesis of this disease remains to be fully elucidated. MicroRNAs (miRNAs) are important in gastrointestinal development and may be involved in the pathogenesis of ARMs. The present study aimed to profile miRNAs and examine their potential functions in rats with ethylenethiourea (ETU)­induced ARMs. Pregnant Wistar rats (n=36) were divided randomly into ETU­treated and control groups. The rats in the ETU­treated group were gavage­fed 1% ETU (125 mg/kg) on gestational day 10 (GD10), whereas the control group rats received a corresponding dose of saline. Embryos were harvested by cesarean section on GD14, GD15 and GD16. Hindgut tissue was isolated from the fetuses for RNA extraction and microarray analysis, followed by bioinformatics analysis and reverse transcription­quantitative polymerase chain reaction (RT­qPCR) validation. Overall, 38 miRNAs were differentially expressed (all upregulated) on GD14, 49 (32 upregulated and 17 downregulated) on GD15, and 42 (all upregulated) on GD16 in the ARM group compared with the normal group. The top 18 miRNAs with |log2(fold change)| >4.25 were selected for further bioinformatics analysis. Among these miRNAs, five were differentially expressed at two time-points and were involved in ARM­associated signaling pathways. The RT­qPCR analysis revealed that three miRNA (miR), miR­125b­2­3p, miR­92a­2­5p and miR­99a­5p, were significantly differentially expressed in rats with ARMs compared with the normal group. In conclusion, the results suggested that the differential expression of miR­125b­2­3p, miR­92a­2­5p and miR­99a­5p during key time-points of anorectal formation in rats may have functions in the pathogenesis of ARM.


Assuntos
Malformações Anorretais/induzido quimicamente , Malformações Anorretais/genética , Embrião de Mamíferos/metabolismo , Etilenotioureia/toxicidade , MicroRNAs/metabolismo , Análise em Microsséries/métodos , Animais , Biologia Computacional , Feminino , Gravidez , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Chin Med J (Engl) ; 131(17): 2055-2062, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30127215

RESUMO

BACKGROUND: The pathogenicity of cleft lip (CL) is pretty complicated since it is influenced by the interaction of environment and genetic factors. The purpose of this study was to conduct a genome-wide screening of aberrant methylation loci in partial lesion tissues of patients with nonsyndromic CL (NSCL) and preliminarily validate candidate dysmethylated genes associated with NSCL. METHODS: Fifteen healthy and sixteen NSCL fetal lip tissue samples were collected. The Infinium HumanMethylation450 BeadChip was used to screen aberrant methylation loci in three NSCL and three healthy lip tissues. The differential methylation sites and functions of the annotated genes between NSCL and healthy lip tissues were analyzed using minfi package of R software, cluster analysis, Gene Ontology (GO) annotation, and metabolic pathway annotation. Gene expression was assessed in nine differentially methylated genes by real-time polymerase chain reaction (PCR). The transcriptions mRNA levels of three out of nine candidate genes were downregulated remarkably in NSCL lip tissues, and these three genes' abnormal methylation loci were validated by pyrosequencing in 16 NSCL cases and 15 healthy cases. RESULTS: In total, 4879 sites in the genes of NSCL odinopoeia fetuses showed aberrant methylation when compared with normal lip tissue genome. Among these, 3661 sites were hypermethylated and 1218 sites were hypomethylated as compared to methylation levels in healthy specimens. These aberrant methylation sites involved 2849 genes and were widely distributed among the chromosomes. Most differentially methylated sites were located in cytosine-phosphoric acid-guanine islands. Based on GO analysis, aberrantly methylated genes were involved in 11 cellular components, 13 molecular functions, and a variety of biological processes. Notably, the transcription of DAB1, REELIN, and FYN was significantly downregulated in lesion tissues of NSCL fetus (P < 0.05). Pyrosequencing results validated that there were two loci in DAB1 with high methylation status in patient tissues (P < 0.05). CONCLUSIONS: We detected numerous aberrantly methylated loci in lesion tissues of NSCL fetus. Aberrant gene expression in the REELIN signaling pathway might be related with NSCL. Decreased transcription of DAB1, a member of REELIN signal pathway, resulted from its abnormal high methylation, which might be one of the factors underlying the occurrence of NSCL.


Assuntos
Moléculas de Adesão Celular Neuronais/genética , Fenda Labial/genética , Metilação de DNA , Proteínas da Matriz Extracelular/genética , Proteínas do Tecido Nervoso/genética , Serina Endopeptidases/genética , Transdução de Sinais , Estudos de Casos e Controles , Humanos , Metilação , Polimorfismo de Nucleotídeo Único , Proteína Reelina
17.
PeerJ ; 6: e4445, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29507836

RESUMO

PURPOSE: This study was performed to investigate the expression pattern of Wnt inhibitory factor 1 (Wif1) and ß-catenin during anorectal development in normal and anorectal malformation (ARM) embryos and the possible role of Wif1 and ß-catenin in the pathogenesis of ARM. METHODS: ARM was induced with ethylenethiourea on the 10th gestational day in rat embryos. Cesarean deliveries were performed to harvest the embryos. The expression pattern of Wif1 and ß-catenin protein and mRNA was evaluated in normal rat embryos (n = 288) and ARM rat embryos (n = 306) from GD13 to GD16 using immunohistochemical staining, Western blot, and real time RT-PCR. RESULTS: Immunohistochemical staining revealed that in normal embryos Wif1 was constantly expressed in the cloaca from GD13 to GD16. On GD13 and GD14, Wif1-immunopositive cells were extensively expressed in the cloaca. On GD15, the expression of Wif1 were mainly detected on the very thin anal membrane. In ARM embryos, the epithelium of the hindgut and urorectal septum demonstrated faint immunostaining for Wif1 from GD14 to GD16. Western blot and real time RT-PCR revealed that Wif1 and ß-catenin protein and mRNA expression level was significantly decreased in the ARM groups compared with the normal group on GD14 and GD15 (p < 0.05). CONCLUSIONS: This study demonstrated that the expression pattern of Wif1 and ß-catenin was disrupted in ARM embryos during anorectal morphogenesis, which demonstrated that downregulation of Wif1 and ß-catenin at the time of cloacal separation into the primitive rectum and urogenital septum might related to the development of ARM.

18.
J Cell Biochem ; 119(10): 8035-8047, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29377305

RESUMO

Calcium binding protein calbindin-D28K (CaBP28K) mediates the relationship between vitamin D and calcium, but its mechanism remains unclear during bone formation. The present study reports that maternal CaBP28K levels were positively correlated with paired umbilical cord CaBP28K levels. In addition, CaBP28K levels were positively correlated with the body length, and head and chest circumferences of neonates, but negatively correlated with maternal 25(OH)D3 levels. CaBP28K was also downregulated in MC3T3-E1 osteoblasts when treated with 1,25(OH)2D or VDR overexpression, but was upregulated in the femur of 1α(OH)ase(-/-) mice. Furthermore, it was found CaBP28K may influence cell differentiation and matrix formation through the regulation of DMP1 and the interaction with MMP13 in osteoblasts. This suggests that CaBP28K could be a candidate for the negative role of 1,25(OH)2D/VDR in regulating bone mass.


Assuntos
Calbindina 1/metabolismo , Calcitriol/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteogênese/fisiologia , Receptores de Calcitriol/metabolismo , Adolescente , Adulto , Animais , Calbindina 1/genética , Linhagem Celular , Proteínas da Matriz Extracelular/genética , Feminino , Humanos , Metaloproteinase 13 da Matriz/genética , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Osteogênese/genética , Adulto Jovem
19.
J Mol Histol ; 48(5-6): 379-387, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28975535

RESUMO

This study examined the expression patterns of proprotein convertase subtilisin/kexin type 5 (Pcsk5) during anorectal development in normal and anorectal malformations (ARM) rat embryos, determine the possible role of Pcsk5 in the pathogenesis of ARM. An ARM rat model was developed by the administration of ethylenethiourea gestational day 10 (GD10). Embryos were harvested by surgical excision from GD13 to GD16, and the spatiotemporal expression of Pcsk5 was evaluated, using immunohistochemistry staining, Western blotting and real time RT-PCR. Immunohistochemistry staining in normal embryos revealed that Pcsk5 was abundantly expressed on the epithelium of the cloaca (CL) on GD13. On GD14 and GD15, positive cells were noted on the urorectal septum and the thin anal membrane. However, the epithelium of the CL of ARM embryos only faintly expressed Pcsk5 from GD13 to GD15. Western blotting and real time RT-PCR showed time-dependent increase of Pcsk5 expression in the developing hindgut. Pcsk5 expression levels were lower in the ARM group from GD14 to GD16 (p ≤ 0.05). These results indicate that downregulation of Pcsk5 during cloaca development into the rectum and urethra might be related to the formation of ARMs.


Assuntos
Malformações Anorretais/genética , Feto/anormalidades , Feto/metabolismo , Pró-Proteína Convertase 5/genética , Animais , Malformações Anorretais/patologia , Western Blotting , Cloaca/embriologia , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/metabolismo , Imuno-Histoquímica , Pró-Proteína Convertase 5/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
20.
Exp Mol Pathol ; 101(1): 143-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27477499

RESUMO

The aim of this study was to determine Bmpr1a and Bmp2 expression patterns during anorectal development in normal and anorectal malformation (ARM) embryos with a view to establishing the possible role of Bmpr1a and Bmp2 in ARM pathogenesis. ARM was induced with ethylenethiourea on the 10th gestational day (GD10) in rat embryos. The embryos were harvested by Cesarean deliveries. The expression of Bmpr1a and Bmp2 was evaluated in normal rat embryos (n=213) and ARM embryos (n=236) from GD14 to GD16. Immunohistochemical staining revealed, in normal embryos, that Bmpr1a and Bmp2 was mainly expressed on the epithelium of the urorectal septum (URS) and the cloacal membrane (CM) on GD14 and GD15. When the rectum separated from the urogenital sinus (UGS) on GD16, Bmpr1a- and Bmp2-immunolabeled cells were observed on the anorectal epithelium. In ARM embryos, the epithelium of the hindgut and URS demonstrated faint immunostaining for Bmpr1a and Bmp2. Analyses by Western blot and Real-time PCR revealed that Bmpr1a and Bmp2 protein and mRNA expression were significantly decreased in the ARM hindgut compared with normal hindgut on GD14 and GD15 (P<0.05). In ARM embryos, an imbalance in the spatiotemporal expression of Bmpr1a and Bmp2 was noted during anorectal morphogenesis from GD14 to GD16. Therefore, downregulation of Bmpr1a and Bmp2 at the time of cloacal separation into the primitive rectum and UGS might be related to the development of ARM.


Assuntos
Malformações Anorretais/genética , Proteína Morfogenética Óssea 2/genética , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/genética , Sistema Digestório/embriologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Animais , Malformações Anorretais/patologia , Western Blotting , Proteína Morfogenética Óssea 2/metabolismo , Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Sistema Digestório/metabolismo , Idade Gestacional , Imuno-Histoquímica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA