Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7: 41608, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28148961

RESUMO

Differentiation of myoblasts is essential in the development and regeneration of skeletal muscles to form multinucleated, contractile muscle fibers. However, the process of myoblast differentiation in mammals is complicated and requires to be further investigated. In this study, we found Palmdelphin (Palmd), a cytosolic protein, promotes myoblast differentiation. Palmd is predominantly expressed in the cytosol of myoblasts and is gradually up-regulated after differentiation. Knockdown of Palmd by small interfering RNA (siRNA) in C2C12 markedly inhibits myogenic differentiation, suggesting a specific role of Palmd in the morphological changes of myoblast differentiation program. Overexpression of Palmd in C2C12 enhances myogenic differentiation. Remarkably, inhibition of Palmd results in impaired myotube formation during muscle regeneration after injury. These findings reveal a new cytosolic protein that promotes mammalian myoblast differentiation and provide new insights into the molecular regulation of muscle formation.


Assuntos
Diferenciação Celular/genética , Proteínas de Membrana/genética , Desenvolvimento Muscular/genética , Mioblastos/citologia , Mioblastos/metabolismo , Regeneração , Animais , Linhagem Celular , Feminino , Expressão Gênica , Técnicas de Silenciamento de Genes , Imuno-Histoquímica , Proteínas de Membrana/metabolismo , Camundongos , Músculo Esquelético/lesões , Músculo Esquelético/metabolismo , Interferência de RNA , RNA Interferente Pequeno/genética
2.
Biochem Biophys Res Commun ; 484(3): 592-597, 2017 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-28153733

RESUMO

Myotubularin related protein 7 (MTMR7) is a key member of the highly conserved myotubularin related proteins (MTMRs) family, which has phosphatase activity. MTMR7 was increased during myoblast differentiation and exhibited high expression level at primary fibers formation stages in pigs. This suggests that MTMR7 may be involved in myogenesis. In our study, we investigated the roles of MTMR7 on proliferation and differentiation of C2C12 myoblasts. Knocking down MTMR7 not only enhanced myoblast early differentiation via altering the expression of Myf5, but also promoted myoblast proliferation through increasing cyclinA2 expression. The improved proliferation capacity was related to the increased phosphorylation of AKT. Taken together, our research demonstrates that MTMR7 plays an important role in proliferation and early differentiation of C2C12 myoblast.


Assuntos
Proliferação de Células/fisiologia , Ciclina A2/metabolismo , Desenvolvimento Muscular/fisiologia , Mioblastos/citologia , Mioblastos/fisiologia , Proteínas Tirosina Fosfatases não Receptoras/metabolismo , Animais , Diferenciação Celular/fisiologia , Linhagem Celular , Inativação Gênica/fisiologia , Camundongos , Proteínas Tirosina Fosfatases não Receptoras/genética
3.
J Cell Sci ; 129(22): 4305-4316, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27672022

RESUMO

Although the mechanism underlying modulation of transcription factors in myogenesis has been well elucidated, the function of the transcription cofactors involved in this process remains poorly understood. Here, we identified HMGB2 as an essential nuclear transcriptional co-regulator in myogenesis. HMGB2 was highly expressed in undifferentiated myoblasts and regenerating muscle. Knockdown of HMGB2 inhibited myoblast proliferation and stimulated its differentiation. HMGB2 depletion downregulated Myf5 and cyclin A2 at the protein but not mRNA level. In contrast, overexpression of HMGB2 promoted Myf5 and cyclin A2 protein upregulation. Furthermore, we found that the RNA-binding protein IGF2BP2 is a downstream target of HMGB2, as previously shown for HMGA2. IGF2BP2 binds to mRNAs of Myf5 or cyclin A2, resulting in translation enhancement or mRNA stabilization, respectively. Notably, overexpression of IGF2BP2 could partially rescue protein levels of Myf5 and cyclin A2, in response to HMGB2 decrease. Moreover, depletion of HMGB2 in vivo severely attenuated muscle repair; this was due to a decrease in satellite cells. Taken together, these results highlight the previously undiscovered and crucial role of the HMGB2-IGF2BP2 axis in myogenesis and muscle regeneration.


Assuntos
Proteína HMGB2/metabolismo , Músculo Esquelético/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regeneração , Células Satélites de Músculo Esquelético/metabolismo , Animais , Animais Recém-Nascidos , Proteínas de Ciclo Celular/metabolismo , Diferenciação Celular , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Ciclina A2/genética , Ciclina A2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Desenvolvimento Muscular , Fator Regulador Miogênico 5/genética , Fator Regulador Miogênico 5/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
4.
Biochim Biophys Acta ; 1859(11): 1459-1469, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27452504

RESUMO

Activating transcription factor 4 (ATF4), which is highly expressed in 3T3-L1 adipocytes after adipogenic induction, is essential for adipocytes differentiation. ATF4 also plays a vital role in regulating fatty acids biosynthesis, whereas the detailed mechanism of this process is still unclear. Here we demonstrated that siRNA-based ATF4 depletion in 3T3-L1 adipocytes significantly reduced the accumulation of fatty acids and triglycerides. Moreover, SREBP1c protein, which is an important transcription factor of lipogenesis, appreciably decreased while Srebp1c mRNA increased. Then we identified that ATF4 could maintain SREBP1c protein stability by directly activating the expression of USP7 which deubiquitinates SREBP1c and increases its protein content in cell. Besides, USP7 could restore the synthesis of fatty acids and triglycerides in the absence of ATF4. On the other hand, we found that ATF4 might inhibit the transcription of Srebp1c through TRB3, which is repressed by IBMX and DEX during early adipogenesis. Thus, our data indicate that ATF4 regulates SREBP1c expression to control fatty acids synthesis.


Assuntos
Fator 4 Ativador da Transcrição/fisiologia , Adipócitos/citologia , Diferenciação Celular , Ácidos Graxos/biossíntese , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Células 3T3-L1 , Animais , Camundongos , Transcrição Gênica/fisiologia , Peptidase 7 Específica de Ubiquitina , Proteases Específicas de Ubiquitina/metabolismo
5.
BMC Genomics ; 17: 137, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911206

RESUMO

BACKGROUND: Pig (Sus scrofa) is a major source of dietary proteins for human consumption and is becoming a valuable model in agricultural and biomedical research. The recently developed isobaric tag for relative and absolute quantitation (iTRAQ) method allows sensitive and accurate protein quantification. Here, we performed the first iTRAQ-based quantitative proteomic analyses of Landrace (LR) and Wuzhishan (WZS) pig longissimus dorsi muscle tissues during early embryonic development. RESULTS: The iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS ranging from 21 to 42 days post coitus (dpc) identified a total of 4431 proteins from 17,214 peptides, which were matched with 36,4025 spectra at a false discovery rate of 5%. In both WZS and LR, the largest amount of differentially expressed proteins (DEPs) were found between 28 and 35 dpc. 252 breed-DEPs were selected by GO analysis, including 8 myofibrillar proteins. Only MYHCI/IIA mRNA were detected due to early embryonic stages, and significantly higher expression of them were found in WZS during these 4 stages. MYHCI was first found in WZS at 28 dpc and expressed in both breeds at later stages, while MYHCII protein was not detected until 35 dpc in both breeds. Thus, 33 myogenic breed-DEPs selected from last two stages were analyzed by STRING, which showed that some myofibrillar proteins (MYH1, TPM4, MYH10, etc.) and functional proteins (CSRP2, CASQ2, OTC, etc.), together with candidate myogenic proteins (H3F3A, HDGFRP2, etc.), probably participate in the regulatory network of myofiber formation. CONCLUSION: Our iTRAQ-based early embryonic longissimus dorsi muscle study of LR and WZS provides new data on the in vivo muscle development distinctions during early embryonic development, which contributes to the improved understanding in the regulation mechanism of early myogenesis in agricultural animals.


Assuntos
Desenvolvimento Embrionário , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/fisiologia , Proteômica , Animais , Músculo Esquelético/embriologia , Suínos/embriologia , Porco Miniatura/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA