Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Am J Cancer Res ; 12(9): 4103-4119, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36225642

RESUMO

Although cellular senescence has long been recognized as an anti-tumor mechanism, mounting evidence suggests that in some circumstances, senescent cells promote tumor growth and malignancy spread. Therefore, research into the exact relationship between cellular senescence and tumor immunity is ongoing. We analyzed changes in the expression, copy number variation, single-nucleotide variation, methylation, and drug sensitivity of cellular senescence-related genes in 33 tumor types. The cellular senescence score was calculated using the single-sample gene-set enrichment analysis. The correlations between cellular senescence score and prognosis, tumor immune microenvironment (TIME), and expression of tumor immune-related genes were comprehensively analyzed. Single-cell transcriptome sequencing data were used to assess the activation state of cellular senescence in the tumor microenvironment (TME). The expression of cellular senescence-associated hub genes varied significantly across cancer types. In these genes, missense mutation was the major type of single nucleotide polymorphism, and heterozygous deletion and heterozygous amplification were the major types of copy number variation. Moreover, the cellular senescence pathway in tumors was sensitive to drugs such as XMD13-2, TPCA-1, methotrexate, and KIN001-102. Furthermore, the cellular senescence score was significantly higher in most cancer types, related to poor prognosis. The expression of immune checkpoint molecules such as NRP1, CD276, and CD44 was significantly correlated with the cellular senescence score. Monocyte cellular senescence was significantly higher in the TME of kidney renal clear cell carcinoma cells than in normal tissues. The findings of this study provide insights into the important role of cellular senescence in the TIME of human cancers and the effect of immunotherapy.

2.
Macromol Biosci ; 22(10): e2200174, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35817026

RESUMO

Branched star polymers offer exciting opportunities in enhancing the efficacy of nanocarriers in delivering biologically active lipophilic agents. It is demonstrated that the star polymeric architecture can be leveraged to yield soft nanoparticles of vesicular morphology with precisely located stimuli-sensitive chemical entities. Amphiphilic stars of AB2 (A = PEG, B = PCL) composition with/without oxidative stress or reduction responsive units at the core junction of A and B arms, are constructed using synthetic articulation. Fisetin, a natural flavonoid with remarkable anti-inflammatory and antioxidant properties, but of limited clinical value due to its poor aqueous solubility, is physically encapsulated into miktoarm star-derived aqueous polymersomes. Polymersomes and fisetin are evaluated separately, and in combination, in human microglia (HMC3), to show if i) polymersomes are toxic; ii) fisetin reduces the abundance of reactive oxygen species (ROS); and iii) fisetin modulates the activation of ERK1/2. These signaling molecules and pathways are implicated in inflammatory processes and cell survival. Fisetin, both incorporated and nonincorporated into polymersomes, reduces ROS and ERK1/2 phosphorylation in lipopolysaccharide-treated human microglia, normalizing excessive oxidative stress and ERK-mediated signaling.


Assuntos
Microglia , Polímeros Responsivos a Estímulos , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Flavonóis/farmacologia , Humanos , Lipopolissacarídeos/farmacologia , Microglia/metabolismo , Polímeros/química , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA