Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Res Int ; 176: 113858, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163737

RESUMO

Heavy metal exposure is a growing concern due to its adverse effects on human health, including the disruption of gut microbiota composition and function. Dietary fibers have been shown to positively impact the gut microbiota and could mitigate some of the heavy metal negative effects. This study aimed to investigate the effects of different heavy metals (As, Cd and Hg in different concentrations) on gut microbiota in the presence and absence of different dietary fibers that included fructooligosaccharides, pectin, resistant starch, and wheat bran. We observed that whereas heavy metals impaired fiber fermentation outcomes for some fiber types, the presence of fibers generally protected gut microbial communities from heavy metal-induced changes, especially for As and Cd. Notably, the protective effects varied depending on fiber types, and heavy metal type and concentration and were overall stronger for wheat bran and pectin than other fiber types. Our findings suggest that dietary fibers play a role in mitigating the adverse effects of heavy metal exposure on gut microbiota health and may have implications for the development of dietary interventions to reduce dysbiosis associated with heavy metal exposure. Moreover, fiber-type specific outcomes highlight the importance of evidence-based selection of prebiotic dietary fibers to mitigate heavy metal toxicity to the gut microbiota.


Assuntos
Fibras na Dieta , Microbioma Gastrointestinal , Humanos , Fibras na Dieta/análise , Cádmio , Fezes/química , Pectinas/farmacologia
2.
Chemosphere ; 274: 129792, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33556663

RESUMO

Heavy metals (HMs) in crops and processed foods are a concern and pose a potential serious health hazard. This study investigated possible presence of HMs in grains and processed products in the Region of Arequipa in Peru. Concentrations of Cd, As, Sn, Pb, and Hg were determined for commonly consumed grains in 18 districts of the region and processed products from 3 popular markets of Arequipa city, using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) and Cold Vapor Atomic Absorption Spectroscopy (CVAAS). HM concentrations above the Codex General Standard limits were found for As (0.17 mg kg-1) and Cd (0.11 mg kg-1) in cereal grains. Elevated Pb concentrations of 0.55, 0.75, and 5.08 mg kg-1 were found for quinoa, maize, and rice products, respectively; and attributed to processing conditions. The Total Hazard Index (HI) for polished rice and rice products had values between 1 and 10, showing non-carcinogenic adverse effects. Total Target Cancer Risk (TRT) and uncertainty analysis of percentile P90% for polished rice and quinoa products gave values above permissible limit of 10-4, indicating an unacceptable cancer risk. The Nemerow Composite Pollution Index method (NCPI) showed that processed products had a significant pollution level due to the presence of Pb. While most crops grains had acceptable low HM levels, this is the first report of concerning HM concentrations in some consumed grains and processed products in southern Peru and indicates the necessity to find ways to decrease certain toxic metals in foods.


Assuntos
Metais Pesados , Poluentes do Solo , China , Grão Comestível/química , Monitoramento Ambiental , Contaminação de Alimentos/análise , Metais Pesados/análise , Peru , Polônia , Medição de Risco , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA