Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neurochem Res ; 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38822986

RESUMO

Carbon monoxide poisoning (COP) represents a significant global health burden, characterized by its morbidity and high mortality rates. The pathogenesis of COP-induced brain injury is complex, and effective treatment modalities are currently lacking. In this study, we employed network pharmacology to identify therapeutic targets and associated signaling pathways of Zhuli Decoction (ZLD) for COP. Subsequently, we conducted both in vitro and in vivo experiments to validate the therapeutic efficacy of ZLD in combination with N-butylphthalide (NBP) for acute COP-induced injury. Our network pharmacology analysis revealed that the primary components of ZLD exerted therapeutic effects through the modulation of multiple targets and pathways. The in vitro and in vivo experiments demonstrated that the combination of NBP and ZLD effectively inhibited apoptosis and up-regulated the activities of P-PI3K (Tyr458), P-AKT (Ser473), P-GSK-3ß (Ser9), and Bcl-2, thus leading to the protection of neuronal cells and improvement in cognitive function in rats following COP, which was better than the effects observed with NBP or ZLD alone. The rescue experiment further showed that LY294002, a PI3K inhibitor, significantly attenuated the therapeutic efficacy of NBP + ZLD. The neuroprotection effects of NBP and ZLD against COP-induced brain injury are closely linked to the activation of the PI3K/AKT/GSK-3ß signaling pathway.

2.
Environ Toxicol ; 39(3): 1140-1162, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860845

RESUMO

Sulforaphane (SFN) has attracted much attention due to its ability on antioxidant, anti-inflammatory, and anti-apoptotic properties, while its functional targets and underlying mechanism of action on brain injury caused by acute carbon monoxide poisoning (ACOP) have not been fully elucidated. Herein, we used a systematic network pharmacology approach to explore the mechanism of SFN in the treatment of brain damage after ACOP. In this study, the results of network pharmacology demonstrated that there were a total of 81 effective target genes of SFN and 36 drug-disease targets, which were strongly in connection with autophagy-animal signaling pathway, drug metabolism, and transcription disorders in cancer. Upon the further biological function and KEGG signaling pathway enrichment analysis, a large number of them were involved in neuronal death, reactive oxygen metabolic processes and immune functions. Moreover, based on the results of bioinformatics prediction associated with multiple potential targets and pathways, the AMP-activated protein kinase (AMPK) signaling pathway was selected to elucidate the molecular mechanism of SFN in the treatment of brain injury caused by ACOP. The following molecular docking analysis also confirmed that SFN can bind to AMPKα well through chemical bonds. In addition, an animal model of ACOP was established by exposure to carbon monoxide in a hyperbaric oxygen chamber to verify the predicted results of network pharmacology. We found that the mitochondrial ultrastructure of neurons in rats with ACOP was seriously damaged, and apoptotic cells increased significantly. The histopathological changes were obviously alleviated, apoptosis of cortical neurons was inhibited, and the number of Nissl bodies was increased in the SFN group as compared with the ACOP group (p < .05). Besides, the administration of SFN could increase the expressions of phosphorylated P-AMPK and MFN2 proteins and decrease the levels of DRP1, Caspase3, and Casapase9 proteins in the brain tissue of ACOP rats. These findings suggest that network pharmacology is a useful tool for traditional Chinese medicine (TCM) research, SFN can effectively inhibit apoptosis, protect cortical neurons from the toxicity of carbon monoxide through activating the AMPK pathway and may become a potential therapeutic strategy for brain injury after ACOP.


Assuntos
Lesões Encefálicas , Intoxicação por Monóxido de Carbono , Medicamentos de Ervas Chinesas , Isotiocianatos , Sulfóxidos , Ratos , Animais , Simulação de Acoplamento Molecular , Monóxido de Carbono , Proteínas Quinases Ativadas por AMP , Farmacologia em Rede , Encéfalo
3.
J Nanobiotechnology ; 21(1): 441, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993870

RESUMO

Aluminium adjuvants are commonly used in vaccines to stimulate the immune system, but they have limited ability to promote cellular immunity which is necessary for clearing viral infections like hepatitis B. Current adjuvants that do promote cellular immunity often have undesired side effects due to the immunostimulants they contain. In this study, a hybrid polymer lipid nanoparticle (HPLNP) was developed as an efficient adjuvant for the hepatitis B surface antigen (HBsAg) virus-like particle (VLP) vaccine to potentiate both humoral and cellular immunity. The HPLNP is composed of FDA approved polyethylene glycol-b-poly (L-lactic acid) (PEG-PLLA) polymer and cationic lipid 1, 2-dioleoyl-3-trimethylammonium-propane (DOTAP), and can be easily prepared by a one-step method. The cationic optimised vaccine formulation HBsAg/HPLNP (w/w = 1/600) can maximise the cell uptake of the antigen due to the electrostatic adsorption between the vaccine nanoparticle and the cell membrane of antigen-presenting cells. The HPLNP prolonged the retention of the antigen at the injection site and enhanced the lymph node drainage of antigen, resulting in a higher concentration of serum anti-HBsAg IgG compared to the HBsAg group or the HBsAg/Al group after the boost immunisation in mice. The HPLNP also promoted a strong Th1-driven immune response, as demonstrated by the significantly improved IgG2a/IgG1 ratio, increased production of IFN-γ, and activation of CD4 + and CD8 + T cells in the spleen and lymph nodes. Importantly, the HPLNP demonstrated no systemic toxicity during immunisation. The advantages of the HPLNP, including good biocompatibility, easy preparation, low cost, and its ability to enhance both humoral and cellular immune responses, suggest its suitability as an efficient adjuvant for protein-based vaccines such as HBsAg-VLP. These findings highlight the promising potential of the HPLNP as an HBV vaccine adjuvant, offering an alternative to aluminium adjuvants currently used in vaccines.


Assuntos
Antígenos de Superfície da Hepatite B , Nanopartículas , Camundongos , Animais , Polímeros , Alumínio , Vacinas contra Hepatite B/uso terapêutico , Adjuvantes Imunológicos , Imunidade Celular , Imunidade Humoral
4.
Front Neurol ; 14: 1119871, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37006490

RESUMO

Objective: Based on network meta-analysis (NMA) and network pharmacology approaches, we explored the clinical efficacy of different regimens, and clarified the pharmacological mechanisms of N-butylphthalide (NBP) in the treatment of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Methods: Firstly, NMA was conducted to obtain the ranking of the efficacy of different regimens for the treatment of DEACMP. Secondly, the drug with a relatively high efficacy ranking was selected and its mechanism of treatment for DEACMP was identified through a network pharmacology analysis. By the use of protein interaction and enrichment analysis, the pharmacological mechanism was predicted, and molecular docking was subsequently carried out to verify the reliability of the results. Results: A total of 17 eligible randomized controlled trials (RCTs) involving 1293 patients and 16 interventions were eventually included in our analysis from NMA. Mesenchymal stem cells (MSCs) + NBP significantly increased mini-mental state examination (MMSE) and Barthel index (BI) scores; NBP + dexamethasone (DXM) was the most effective treatment in improving the activity of daily living (ADL) scores; NBP significantly decreased national institutes of health stroke scale (NIHSS) scores; Xingzhi-Yinao granules (XZYN) had more advantages in improving Montreal cognitive assessment (MoCA) scores, translational direct current stimulation (tDCS) had a significant effect in improving P300 latency and P300 amplitude and Kinnado + Citicoline had the most obvious effect in improving malondialdehyde (MDA). Meanwhile, by network pharmacology analysis, 33 interaction genes between NBP and DEACMP were obtained, and 4 of them were identified as possible key targets in the process of MCODE analysis. 516 Gene ontology (GO) entries and 116 Kyoto Encyclopedia of Gene and Genome (KEGG) entries were achieved by enrichment analysis. Molecular docking showed that NBP had good docking activity with the key targets. Conclusion: The NMA screened for regimens with better efficacy for each outcome indicator in order to provide a reference for clinical treatment. NBP can stably bind ALB, ESR1, EGFR, HSP90AA1, and other targets, and may play a role in neuroprotection for patients with DEACMP by modulating Lipid and atherosclerosis, IL-17 signaling pathway, MAPK signaling pathway, FoxO signaling pathway, PI3K/AKT signaling pathway.

5.
Am J Emerg Med ; 61: 18-28, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029667

RESUMO

INTRODUCTION: Carbon monoxide (CO) poisoning can cause serious neurological sequelae. However, there is neither effective treatment strategy nor reliable indicators to determine the prognosis of patients with CO poisoning. The present study aimed to observe the changes of neurological function score, disease severity score, cerebral oxygen utilization (O2UCc), bispectral (BIS) index and neuron-specific enolase (NSE) concentration, and to elucidate the clinical significance of these potential indicators and the neuroprotective effect of mild hypothermia on brain injury in patients with severe acute CO poisoning. MATERIALS AND METHODS: A total of 277 patients with acute severe CO poisoning from 2013 to 2018 were enrolled in our hospital. Patients were divided into three groups according to their body temperature on the day of admission and their willingness to treat: a fever group (n = 78), a normal temperature group (NT group, n = 113), and a mild hypothermia group (MH group, n = 86). All patients were given hyperbaric oxygen therapy, while those in the MH group received additional mild hypothermia treatment. The severity of the disease, the neurobehavioral status, the incidence of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP), and other indicators including BIS, O2UCc, NSE were further evaluated in all patients at given time-points. RESULTS: Mild hypothermia therapy improved the prognosis of patients with CO poisoning, significantly decreased the value of O2UCc and NSE, and up-regulated BIS. The incidence of DEACMP at 6 months was 27% in the fever group, 23% in the NT group, and 8% in the MH group. The values of Glasgow-Pittsburgh coma scale (G-P score), BIS index and NSE were closely related to the occurrence of DEACMP, the cutoff values were 12.41, 52.17 and 35.20 ng/mL, and the sensitivity and specificity were 79.3%, 77.6%, 79.3% and 67.6%, 89.5%, 88.6% in the receiver operating characteristic curve (ROC), respectively. CONCLUSIONS: Early mild hypothermia treatment could significantly reduce the severity of brain injury after CO poisoning, and might be further popularized in clinic. G-P scores, NSE and BIS index can be regarded as the prediction indicators in the occurrence and development of DEACMP. CLINICAL TRIAL REGISTRATION: The study protocol was granted from Qingdao University Research Ethics Committee (Clinical trial registry and ethical approval number: QD81571283).


Assuntos
Encefalopatias , Lesões Encefálicas , Intoxicação por Monóxido de Carbono , Hipotermia , Fármacos Neuroprotetores , Humanos , Intoxicação por Monóxido de Carbono/complicações , Intoxicação por Monóxido de Carbono/terapia , Neuroproteção , Monóxido de Carbono , Hipotermia/complicações , Fosfopiruvato Hidratase , Oxigênio , Encefalopatias/etiologia , Encefalopatias/terapia
7.
Environ Toxicol ; 37(3): 413-434, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34761859

RESUMO

The pathogenesis of brain injury caused by carbon monoxide poisoning (COP) is very complex, and there is no exact and reliable treatment in clinic. In the present study, we screened the therapeutic target and related signal pathway of Salvia Miltiorrhiza for acute COP brain injury, and clarified the pharmacological mechanism of multicomponent, multitarget, and multisignal pathway in Salvia Miltiorrhiza by network pharmacology. To further verify the therapeutic effect of Salvia Miltiorrhiza on acute brain injury based on the results of network analysis, a total of 216 male healthy Sprague Dawley rats were collected in the present study and randomly assigned to a normal control group, a COP group and a Tanshinone IIA sulfonate treatment group (72 rats in each group). The rat model of acute severe COP was established by the secondary inhalation in a hyperbaric oxygen chamber. We found that Salvia Miltiorrhiza had multiple active components, and played a role in treating acute brain injury induced by COP through multiple targets and multiple pathways, among them, MAPK/ERK1/2 signaling pathway was one of the most important. COP can start apoptosis process, activate the MAPK/ERK1/2 signaling pathway, and promote the expression of VEGF-A protein and the formation of brain edema. Tanshinone IIA can effectively inhibit apoptosis, up-regulate the expressions of VEGF-A, P-MEK1/2 and P-ERK1/2 proteins, thereby protect endothelial cells, promote angiogenesis and microcirculation, and finally alleviate brain edema.


Assuntos
Lesões Encefálicas , Intoxicação por Monóxido de Carbono , Salvia miltiorrhiza , Animais , Lesões Encefálicas/tratamento farmacológico , Intoxicação por Monóxido de Carbono/tratamento farmacológico , Células Endoteliais , Internet , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA