RESUMO
Directly capturing atmospheric CO2 and converting it into valuable fuel through photothermal synergy is an effective way to mitigate the greenhouse effect. This study developed a gas-solid interface photothermal catalytic system for atmospheric CO2 reduction, utilizing the innovative photothermal catalyst (Cu porphyrin) CuTCPP/MXene/TiO2. The catalyst demonstrated a photothermal catalytic performance of 124 µmol·g-1·h-1 for CO and 106 µmol·g-1·h-1 for CH4, significantly outperforming individual components. Density functional theory (DFT) results indicate that the enhanced catalytic performance is attributed to the internal electric field between the components, which significantly enhances carrier utilization. The introduction of CuTCPP reduces free energy of the photothermal catalytic reaction. Additionally, the local surface plasmon resonance (LSPR) effect and high-speed electron transfer properties of MXene further boost the catalytic reaction rate. This well-designed catalyst and catalytic system offer a simple method for capturing atmospheric CO2 and converting it in-situ through photothermal catalysis.
RESUMO
OBJECTIVE: To investigate the application of Enhanced Recovery After Surgery (ERAS) in the nursing care of patients undergoing Thulium laser prostatectomy and analyze the factors affecting postoperative complications. METHODS: This retrospective study analyzed the clinical data of 108 patients who underwent Thulium Laser Prostatectomy in the Zhejiang University Sir Run Run Shaw Alaer Hospital from July 2022 to October 2023. Among them, 58 patients who received nursing care based on the concept of ERAS from January 2023 to October 2023 were assigned to the study group, while the other 50 patients who received conventional nursing care from July 2022 to December 2022 were assigned to the control group. Postoperative recovery indicators, satisfaction with nursing care services, and postoperative complications were analyzed. Logistic regression analysis was used to identify factors affecting complications after Thulium laser prostatectomy. RESULTS: The study group showed significantly shorter time to first flatus, lower pain scores on the first day after surgery, shorter time to first out-of-bed activity, and shorter hospital stay than the control group (all P < 0.0001). Compared with the control group, the study group expressed notably higher nursing care satisfaction (P=0.0151) and showed a significantly lower incidence of postoperative complications (P=0.0236). Logistic regression analysis identified disease duration and nursing care intervention as independent risk factors affecting patient complications. CONCLUSION: For patients undergoing Thulium Laser Prostatectomy, ERAS contributes to good postoperative recovery and patient satisfaction and less complications. Disease duration and nursing care intervention were identified as independent factors impacting post-operative complications.
Assuntos
Histona Desacetilase 1 , Neoplasias Ovarianas , Animais , Feminino , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Progressão da Doença , Regulação para Baixo/efeitos dos fármacos , Histona Desacetilase 1/metabolismo , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/genética , Ovário/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Supressoras de Tumor/genéticaRESUMO
The skeletal muscle satellite cells (SCs) mediate regeneration of myofibers upon injury. As they switch from maintenance (quiescence) to regeneration, their relative reliance on glucose and fatty acid metabolism alters. To explore the contribution of mitochondrial fatty acid oxidation (FAO) pathway to SCs and myogenesis, we examined the role of carnitine palmitoyltransferase 1A (CPT1A), the rate-limiting enzyme of FAO. CPT1A is highly expressed in quiescent SCs (QSCs) compared with activated and proliferating SCs, and its expression level decreases during myogenic differentiation. Myod1Cre-driven overexpression (OE) of Cpt1a in embryonic myoblasts (Cpt1aMTG) reduces muscle weight, grip strength, and contractile force without affecting treadmill endurance of adult mice. Adult Cpt1aMTG mice have reduced number of SC, impairing muscle regeneration and promoting lipid infiltration. Similarly, Pax7CreER-driven, tamoxifen-inducible Cpt1a-OE in QSCs of adult muscles (Cpt1aPTG) leads to depletion of SCs and compromises muscle regeneration. The reduced proliferation of Cpt1a-OE SCs is associated with elevated level of acyl-carnitine, and acyl-carnitine treatment impedes proliferation of wildtype SCs. These findings indicate that aberrant level of CPT1A elevates acyl-carnitine to impair the maintenance, proliferation and regenerative function of SCs.
Assuntos
Carnitina O-Palmitoiltransferase , Desenvolvimento Muscular , Músculo Esquelético , Células Satélites de Músculo Esquelético , Animais , Masculino , Camundongos , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina O-Palmitoiltransferase/genética , Diferenciação Celular , Proliferação de Células , Ácidos Graxos/metabolismo , Camundongos Endogâmicos C57BL , Músculo Esquelético/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/metabolismoRESUMO
Purpose: To avoid the biotoxicity and poor bioavailability of deferoxamine mesylate (DFO), an iron chelation for the treatment of Parkinson's disease (PD), a self-oriented DFO nanoparticle functionalized with Exendin-4 was developed, which can be targeted delivered into the lesion brain area to achieve synergistic effects against PD by iron chelation and inflammatory suppression. Methods: The self-oriented DFO nanoparticles (Ex-4@DFO NPs) were synthesized by double emulsion technique, and characterized in terms of the particle size, morphology and DFO encapsulation efficiency. The cellular internalization, biocompatibility and cytoprotection of NPs were assessed on BV-2 and SH-SY5Y cells. The brain targeting and therapeutic effect of NPs were investigated in MPTP-induced PD mice by near-infrared II fluorescence imaging and immunofluorescence staining, as well as mobility behavioral tests. Results: Ex-4@DFO NPs with a particle size of about 100 nm, showed great biocompatibility and cytoprotection in vitro, which inhibited the decrease of mitochondrial membrane potential of SH-SY5Y cells and the release of inflammatory factors of BV-2 cells. In MPTP-induced PD mice, Ex-4@DFO NPs could penetrate the BBB into brain, and significantly mitigate the loss of dopaminergic neurons and inflammation in the substantia nigra, finally alleviate the mobility deficits. Conclusion: This self-oriented nanosystem not only improved the biocompatibility of DFO, but also enhanced therapeutic effects synergistically by ameliorating neuronal damage and neuroinflammation, showing a potential therapeutic strategy for PD.
Assuntos
Desferroxamina , Exenatida , Nanopartículas , Animais , Desferroxamina/química , Desferroxamina/farmacologia , Desferroxamina/administração & dosagem , Desferroxamina/farmacocinética , Exenatida/química , Exenatida/farmacocinética , Exenatida/farmacologia , Exenatida/administração & dosagem , Camundongos , Nanopartículas/química , Humanos , Masculino , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Doença de Parkinson/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Tamanho da Partícula , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/administração & dosagem , Linhagem CelularRESUMO
BACKGROUND: Treating mitochondrial dysfunction is a promising approach for the treatment of post-stroke cognitive impairment (PSCI). HuMSC-derived exosomes (H-Ex) have shown powerful therapeutic effects in improving mitochondrial function, but the specific effects are unclear and its brain tissue targeting needs to be further optimized. RESULTS: In this study, we found that H-Ex can improve mitochondrial dysfunction of neurons and significantly enhance the cognitive behavior performance of MCAO mice in OGD/R-induced SHSY5Y cells and MCAO mouse models. Based on this, we have developed an exosome delivery system loaded with superparamagnetic iron oxide nanoparticles (Spion-Ex) that can effectively penetrate the blood-brain barrier (BBB). The research results showed that under magnetic attraction, Spion-Ex can more effectively target the brain tissue and significantly improve mitochondrial function of neurons after stroke. Meanwhile, we further confirmed that miR-1228-5p is a key factor for H-Ex to improve mitochondrial function and cognitive behavior both in vivo and in vitro. The specific mechanism is that the increase of miR-1228-5p mediated by H-Ex can inhibit the expression of TRAF6 and activate the TRAF6-NADPH oxidase 1 (NOX1) pathway, thereby exerting protective effects against oxidative damage. More importantly, we found that under magnetic attraction, Spion-Ex exhibited excellent cognitive improvement effects by delivering miR-1228-5p. CONCLUSIONS: Our research found that H-Ex has a good therapeutic effect on PSCI by increasing the expression of miR-1228-5p in PSCI, while H-Ex loaded with Spion-Ex exhibited more excellent effects on improving mitochondrial function and cognitive impairment under magnetic attraction, which can be used as a novel strategy for the treatment of PSCI.
Assuntos
Exossomos , Células-Tronco Mesenquimais , MicroRNAs , Mitocôndrias , Exossomos/metabolismo , Animais , MicroRNAs/metabolismo , MicroRNAs/genética , Humanos , Camundongos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Masculino , Nanopartículas Magnéticas de Óxido de Ferro/química , Fármacos Neuroprotetores/farmacologia , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Acidente Vascular Cerebral/terapia , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/efeitos dos fármacos , Modelos Animais de Doenças , Encéfalo/metabolismoRESUMO
N6-methyladenosine (m6A) is involved in most biological processes and actively participates in the regulation of reproduction. According to recent research, long non-coding RNAs (lncRNAs) and their m6A modifications are involved in reproductive diseases. In the present study, using m6A-modified RNA immunoprecipitation sequencing (m6A-seq), we established the m6A methylation transcription profiles in patients with recurrent implantation failure (RIF) for the first time. There were 1443 significantly upregulated m6A peaks and 425 significantly downregulated m6A peaks in RIF. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that genes associated with differentially methylated lncRNAs are involved in the p53 signalling pathway and amino acid metabolism. The competing endogenous RNA network revealed a regulatory relationship between lncRNAs, microRNAs and messenger RNAs. We verified the m6A methylation abundances of lncRNAs by using m6A-RNA immunoprecipitation (MeRIP)-real-time polymerase chain reaction. This study lays a foundation for further exploration of the potential role of m6A modification in the pathogenesis of RIF.
Assuntos
Adenosina , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética , Feminino , Implantação do Embrião/genética , Metilação , Perfilação da Expressão Gênica , Transcriptoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismoRESUMO
Programmed cell death protein 1 (PD-1)/PD-1 ligand 1 (PD-L1) binding contributes to immune evasion mechanisms responsible for B lymphocyte exhaustion and apoptosis. This facilitates immunosuppression in chronic viral infections, including infectious bursal disease virus (IBDV). Our previous study showed that PD-1 and PD-L1 expression increases in the peripheral blood mononuclear cells of chickens infected with IBDV. However, due to their high production costs and immune-related adverse events, monoclonal antibodies targeting PD-1 or PD-L1 are unsuitable therapeutic agents. Thus, in the current study, we designed peptides with optimized binding sites for PD-1 and investigated their ability to disrupt PD-1/PD-L1 binding and restore B lymphocyte function in vitro. The peptide gCK-16 exhibited a high affinity for PD-1 (KD: 3.37 nM) and effectively inhibited the PD-1/PD-L1 interaction in vitro. Moreover, gCK-16 significantly enhanced B lymphocyte proliferation. Remarkably, gCK-16 treatment abrogated the IBDV-induced upregulation of PD-1/PD-L1, NF-κB activation, and B lymphocyte apoptosis. Additionally, IBDV infection attenuated PI3K/AKT pathway activation in B lymphocytes, while gCK-16 treatment increased immunoglobulin M (IgM) production in IBDV-infected B lymphocytes. Together, these results demonstrate that gCK-16 treatment can potentially enhance B lymphocyte function against IBDV infection, guiding the development of vaccine adjuvants to effectively prevent IBDV-induced avian immunosuppression.
RESUMO
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.
Assuntos
Proteínas de Transporte de Cátions , Glycine max , Fixação de Nitrogênio , Proteínas de Plantas , Bradyrhizobium/metabolismo , Bradyrhizobium/genética , Proteínas de Transporte de Cátions/metabolismo , Proteínas de Transporte de Cátions/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glycine max/metabolismo , Glycine max/genética , Glycine max/microbiologia , Homeostase , Ferro/metabolismo , Nitrogênio/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , SimbioseRESUMO
Tertiary lymphoid structures are immune cell aggregates linked with cancer outcomes, but their interactions with tumour cell aggregates are unclear. Using nasopharyngeal carcinoma as a model, here we analyse single-cell transcriptomes of 343,829 cells from 77 biopsy and blood samples and spatially-resolved transcriptomes of 31,316 spots from 15 tumours to decipher their components and interactions with tumour cell aggregates. We identify essential cell populations in tertiary lymphoid structure, including CXCL13+ cancer-associated fibroblasts, stem-like CXCL13+CD8+ T cells, and B and T follicular helper cells. Our study shows that germinal centre reaction matures plasma cells. These plasma cells intersperse with tumour cell aggregates, promoting apoptosis of EBV-related malignant cells and enhancing immunotherapy response. CXCL13+ cancer-associated fibroblasts promote B cell adhesion and antibody production, activating CXCL13+CD8+ T cells that become exhausted in tumour cell aggregates. Tertiary lymphoid structure-related cell signatures correlate with prognosis and PD-1 blockade response, offering insights for therapeutic strategies in cancers.
Assuntos
Linfócitos T CD8-Positivos , Quimiocina CXCL13 , Imunoterapia , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Análise de Célula Única , Estruturas Linfoides Terciárias , Humanos , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/imunologia , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/terapia , Carcinoma Nasofaríngeo/metabolismo , Estruturas Linfoides Terciárias/imunologia , Estruturas Linfoides Terciárias/genética , Quimiocina CXCL13/metabolismo , Quimiocina CXCL13/genética , Imunoterapia/métodos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/imunologia , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/terapia , Perfilação da Expressão Gênica , Progressão da Doença , Transcriptoma , Linfócitos B/imunologia , Linfócitos B/metabolismo , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética , Prognóstico , Fibroblastos/metabolismo , Fibroblastos/imunologiaRESUMO
BACKGROUND: Type 2 diabetes mellitus (T2DM) is widely recognized as a serious global public health concern with a substantial economic burden on patients, their families, and society. Accumulating evidence suggests that an etiologic role for serum microbiota and circulating metabolites in the pathogenesis of T2DM. This study aims to characterize the serum microbiota and circulating metabolites in cynomolgus monkeys with spontaneous T2DM, and provide a reference for the diagnosis and treatment of clinical T2DM. METHODS: We collected serum samples of the 14 cynomolgus monkeys (15-20 years old, male) for serum microbiota analysis by 16S rRNA gene V3-V4 region amplicon sequencing and circulating metabolites analysis by ultra-high-performance liquid chromatography-tandem mass spectrometry, of which seven were spontaneous T2DM cynomolgus monkeys and seven were healthy controls. RESULTS: Our results showed that the serum microbiota abundance and diversity were significantly increased in cynomolgus monkeys with spontaneous T2DM compared to healthy controls, the phyla of Cyanobacteria and Chloroflexi and the genera of Lactobacillus, rhodobacter and collinsella were also significantly increased. A total of 114 serum differentially expressed metabolites (DEMs) were identified, of which 22 were selected as potential biomarkers candidates related to spontaneous T2DM in cynomolgus monkeys by multivariate data analysis. In addition, serum levels of total SCFAs, acetate, butyrate, caproate, isobutyrate, and isovalerate were also significantly increased in the present study. The correlation network analyses have selected certain key DEMs, such as D-Psicose, 4-Oxoproline, D-Glutamine, and Hydroxyphenyllactic acid, which may serve as potential biomarkers for distinguishing between T2DM and healthy controls. CONCLUSION: Our results provide preliminary insights on perturbed serum microbiota and circulating metabolites of cynomolgus monkeys with spontaneous T2DM. These findings would be useful to develop microbiota-based strategies for T2DM prevention and control.
Assuntos
Diabetes Mellitus Tipo 2 , Macaca fascicularis , Microbiota , Animais , Macaca fascicularis/sangue , Diabetes Mellitus Tipo 2/sangue , Diabetes Mellitus Tipo 2/veterinária , Diabetes Mellitus Tipo 2/microbiologia , Masculino , RNA Ribossômico 16S , Biomarcadores/sangue , Bactérias/classificaçãoRESUMO
The gut microbiota, a pivotal component of the intestinal mucosal barrier, is critical for host resistance to enteric pathogen infection. Here, we report a novel function of the potentially probiotic Lactococcus garvieae strain LG1 (L. garvieae strain LG1) in maintaining intestinal mucosal barrier integrity and protecting against foodborne Clostridium perfringens (C. perfringens) infection. L. garvieae was isolated from the intestinal contents of Chinese Mongolian sheep (MS) and exhibited potential probiotic properties. In a C. perfringens enterocolitis model, L. garvieae-pretreated mice were less susceptible to C. perfringens infection compared with Phosphate buffered solution (PBS)-pretreated mice, which manifested as higher survival rates, lower pathogen loads, less weight loss, mild clinical symptoms and intestinal damage, and minor inflammation. Further mechanistic analysis showed that L. garvieae could ameliorate the disruption of intestinal permeability and maintain the integrity of the intestinal mucosal barrier by promoting the expression of tight junction proteins and mucoproteins. Moreover, L. garvieae was also able to facilitate antimicrobial peptide expression and ameliorate dysbiosis of the gut microbiota caused by C. perfringens. Together, these findings highlight the prospect of immunomodulatory potentially probiotic L. garvieae and might offer valuable strategies for prophylaxis and/or treatment of pathogenic C. perfringens mucosal infection. IMPORTANCE: C. perfringens necrotic enteritis leads to losses of about US $2 billion to the poultry industry worldwide every year. Worse, US Centers for Disease Control and Prevention (CDC) has estimated that C. perfringens causes nearly 1 million foodborne illnesses in the United States annually. Nowadays, the treatment recommendation is a combination of a broad-spectrum synergistic penicillin with clindamycin or a carbapenem, despite growing scientific concern over antibiotic resistance. The global understanding of the gut microbiome for C. perfringens infection may provide important insights into the intervention. L. garvieae originated from Mongolian sheep intestine, exhibited potentially probiotic properties, and was able to limit C. perfringens enterocolitis and pathogenic colonization. Importantly, we found that L. garvieae limits C. perfringens invasion via improving intestinal mucosal barrier function. Also, L. garvieae alleviates C. perfringens-induced gut microbiota dysbiosis. It allowed us to convince that utilization of probiotics to promote protective immunity against pathogens infection is of pivotal importance.
Assuntos
Infecções por Clostridium , Clostridium perfringens , Microbioma Gastrointestinal , Mucosa Intestinal , Lactococcus , Probióticos , Animais , Clostridium perfringens/imunologia , Clostridium perfringens/fisiologia , Camundongos , Infecções por Clostridium/imunologia , Infecções por Clostridium/prevenção & controle , Infecções por Clostridium/microbiologia , Infecções por Clostridium/veterinária , Probióticos/administração & dosagem , Mucosa Intestinal/microbiologia , Mucosa Intestinal/imunologia , Ovinos , Doenças Transmitidas por Alimentos/microbiologia , Doenças Transmitidas por Alimentos/prevenção & controle , Feminino , Modelos Animais de Doenças , Disbiose/microbiologia , Disbiose/prevenção & controle , Disbiose/imunologiaRESUMO
Mitochondrial homeostasis serves as a cornerstone of cellular function, orchestrating a delicate balance between energy production, redox status, and cellular signaling transduction. This equilibrium involves a myriad of interconnected processes, including mitochondrial dynamics, quality control mechanisms, and biogenesis and degradation. Perturbations in mitochondrial homeostasis have been implicated in a wide range of diseases, including neurodegenerative diseases, metabolic syndromes, and aging-related disorders. In the past decades, the discovery of numerous mitochondrial proteins and signaling has led to a more complete understanding of the intricate mechanisms underlying mitochondrial homeostasis. Recent studies have revealed that Family with sequence similarity 210 member A (FAM210A) is a novel nuclear-encoded mitochondrial protein involved in multiple aspects of mitochondrial homeostasis, including mitochondrial quality control, dynamics, cristae remodeling, metabolism, and proteostasis. Here, we review the function and physiological role of FAM210A in cellular and organismal health. This review discusses how FAM210A acts as a regulator on mitochondrial inner membrane to coordinate mitochondrial dynamics and metabolism.
Assuntos
Homeostase , Mitocôndrias , Proteínas Mitocondriais , Animais , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/genética , Transdução de SinaisRESUMO
BACKGROUND: WEE1 is a critical kinase in the DNA damage response pathway and has been shown to be effective in treating serous uterine cancer. However, its role in gliomas, specifically low-grade glioma (LGG), remains unclear. The impact of DNA methylation on WEE1 expression and its correlation with the immune landscape in gliomas also need further investigation. METHODS: This study used data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) and utilized various bioinformatics tools to analyze gene expression, survival, gene correlation, immune score, immune infiltration, genomic alterations, tumor mutation burden, microsatellite instability, clinical characteristics of glioma patients, WEE1 DNA methylation, prognostic analysis, single-cell gene expression distribution in glioma tissue samples, and immunotherapy response prediction based on WEE1 expression. RESULTS: WEE1 was upregulated in LGG and glioblastoma (GBM), but it had a more significant prognostic impact in LGG compared to other cancers. High WEE1 expression was associated with poorer prognosis in LGG, particularly when combined with wild-type IDH. The WEE1 inhibitor MK-1775 effectively inhibited the proliferation and migration of LGG cell lines, which were more sensitive to WEE1 inhibition. DNA methylation negatively regulated WEE1, and high DNA hypermethylation of WEE1 was associated with better prognosis in LGG than in GBM. Combining WEE1 inhibition and DNA methyltransferase inhibition showed a synergistic effect. Additionally, downregulation of WEE1 had favorable predictive value in immunotherapy response. Co-expression network analysis identified key genes involved in WEE1-mediated regulation of immune landscape, differentiation, and metastasis in LGG. CONCLUSION: Our study shows that WEE1 is a promising indicator for targeted therapy and prognosis evaluation. Notably, significant differences were observed in the role of WEE1 between LGG and GBM. Further investigation into WEE1 inhibition, either in combination with DNA methyltransferase inhibition or immunotherapy, is warranted in the context of LGG.
Assuntos
Neoplasias Encefálicas , Proteínas de Ciclo Celular , Metilação de DNA , Glioma , Imunoterapia , Proteínas Tirosina Quinases , Humanos , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Prognóstico , Glioma/genética , Glioma/patologia , Glioma/terapia , Glioma/imunologia , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Imunoterapia/métodos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/terapia , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Feminino , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Proliferação de Células/genética , MasculinoRESUMO
OBJECTIVE: To explore the relationship between the timing of non-emergency surgery in mild or asymptomatic SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infected individuals and the quality of postoperative recovery from the time of confirmed infection to the day of surgery. METHODS: We retrospectively reviewed the medical records of 300 cases of mild or asymptomatic SARS-CoV-2 infected patients undergoing elective general anaesthesia surgery at Yijishan Hospital between January 9, 2023, and February 17, 2023. Based on the time from confirmed SARS-CoV-2 infection to the day of surgery, patients were divided into four groups: ≤2 weeks (Group A), 2-4 weeks (Group B), 4-6 weeks (Group C), and 6-8 weeks (Group D). The primary outcome measures included the Quality of Recovery-15 (QoR-15) scale scores at 3 days, 3 months, and 6 months postoperatively. Secondary outcome measures included postoperative mortality, ICU admission, pulmonary complications, postoperative length of hospital stay, extubation time, and time to leave the PACU. RESULTS: Concerning the primary outcome measures, the QoR-15 scores at 3 days postoperatively in Group A were significantly lower compared to the other three groups (P < 0.05), while there were no statistically significant differences among the other three groups (P > 0.05). The QoR-15 scores at 3 and 6 months postoperatively showed no statistically significant differences among the four groups (P > 0.05). In terms of secondary outcome measures, Group A had a significantly prolonged hospital stay compared to the other three groups (P < 0.05), while other outcome measures showed no statistically significant differences (P > 0.05). CONCLUSION: The timing of surgery in mild or asymptomatic SARS-CoV-2 infected patients does not affect long-term recovery quality but does impact short-term recovery quality, especially for elective general anaesthesia surgeries within 2 weeks of confirmed infection. Therefore, it is recommended to wait for a surgical timing of at least greater than 2 weeks to improve short-term recovery quality and enhance patient prognosis.
Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Feminino , Masculino , Estudos Retrospectivos , Pessoa de Meia-Idade , Fatores de Tempo , Adulto , Estudos de Coortes , Tempo de Internação , Idoso , Anestesia Geral/métodos , Procedimentos Cirúrgicos Eletivos/métodos , Período de Recuperação da AnestesiaRESUMO
Knowledge of locations and activities of cis-regulatory elements (CREs) is needed to decipher basic mechanisms of gene regulation and to understand the impact of genetic variants on complex traits. Previous studies identified candidate CREs (cCREs) using epigenetic features in one species, making comparisons difficult between species. In contrast, we conducted an interspecies study defining epigenetic states and identifying cCREs in blood cell types to generate regulatory maps that are comparable between species, using integrative modeling of eight epigenetic features jointly in human and mouse in our Validated Systematic Integration (VISION) Project. The resulting catalogs of cCREs are useful resources for further studies of gene regulation in blood cells, indicated by high overlap with known functional elements and strong enrichment for human genetic variants associated with blood cell phenotypes. The contribution of each epigenetic state in cCREs to gene regulation, inferred from a multivariate regression, was used to estimate epigenetic state regulatory potential (esRP) scores for each cCRE in each cell type, which were used to categorize dynamic changes in cCREs. Groups of cCREs displaying similar patterns of regulatory activity in human and mouse cell types, obtained by joint clustering on esRP scores, harbor distinctive transcription factor binding motifs that are similar between species. An interspecies comparison of cCREs revealed both conserved and species-specific patterns of epigenetic evolution. Finally, we show that comparisons of the epigenetic landscape between species can reveal elements with similar roles in regulation, even in the absence of genomic sequence alignment.
Assuntos
Epigênese Genética , Epigenoma , Especificidade da Espécie , Animais , Camundongos , Humanos , Células Sanguíneas/metabolismo , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Epigenômica/métodosRESUMO
A novel photoelectrochemical (PEC) sensor was developed for the ultra-sensitive and highly selective detection of hydroquinone (HQ), featuring a composite structure that combines 0D CdS nanoparticles with a 3D flower-like ZnIn2S4 microsphere. The sensor, termed rMIP/CdS/ZnIn2S4, employed molecularly imprinted polymers (MIPs) to achieve specific recognition of HQ. An p-phenylenediamine (pPD) polymer film was electrochemically polymerized onto the surface of the CdS/ZnIn2S4 composite-coated glassy carbon electrode (GCE). Through hydrogen bonding, HQ molecules were imprinted onto the polymer film. Subsequent elution removed these molecules, leaving behind specific recognition sites, enabling selective detection of HQ. The unique spatial structure and heterojunction properties of the 0D CdS nanoparticle/3D flower-like ZnIn2S4 composite, combined with molecular imprinting, significantly enhanced the photocurrent response and increased the selectivity and sensitivity for HQ detection. Under optimal conditions, the rMIP/CdS/ZnIn2S4 sensor demonstrated a low detection limit (0.7 nmol·L-1, S/N=3) over a wide linear range of 1-1200 nmol·L-1. The sensor was successfully applied to detect HQ in real water samples, showing promise for environmental pollution control applications.
RESUMO
Introduction: The rapid development of artificial intelligence (AI) in healthcare has exposed the unmet need for growing a multidisciplinary workforce that can collaborate effectively in the learning health systems. Maximizing the synergy among multiple teams is critical for Collaborative AI in Healthcare. Methods: We have developed a series of data, tools, and educational resources for cultivating the next generation of multidisciplinary workforce for Collaborative AI in Healthcare. We built bulk-natural language processing pipelines to extract structured information from clinical notes and stored them in common data models. We developed multimodal AI/machine learning (ML) tools and tutorials to enrich the toolbox of the multidisciplinary workforce to analyze multimodal healthcare data. We have created a fertile ground to cross-pollinate clinicians and AI scientists and train the next generation of AI health workforce to collaborate effectively. Results: Our work has democratized access to unstructured health information, AI/ML tools and resources for healthcare, and collaborative education resources. From 2017 to 2022, this has enabled studies in multiple clinical specialties resulting in 68 peer-reviewed publications. In 2022, our cross-discipline efforts converged and institutionalized into the Center for Collaborative AI in Healthcare. Conclusions: Our Collaborative AI in Healthcare initiatives has created valuable educational and practical resources. They have enabled more clinicians, scientists, and hospital administrators to successfully apply AI methods in their daily research and practice, develop closer collaborations, and advanced the institution-level learning health system.
RESUMO
OBJECTIVE: There is a lack of effective biomarkers for predicting the distant metastasis in nasopharyngeal carcinoma (NPC). We aimed to explore the expression of FAP+Cancer-associated fibroblasts (CAFs) derived CXCL1 in NPC and its predictive values for distant metastasis and correlation with PD-L1 expression. MATERIALS AND METHODS: A total of 345 patients with locoregionally advanced NPC were retrospectively enrolled (the training cohort: the validation cohort = 160:185). Co-expression of CXCL1 and FAP and the expression of PD-L1 were detected by multi-immunofluorescence staining and immunohistochemistry, respectively. The primary end-point was distant metastasis-free survival (DMFS). The Kaplan-Meier method was used to calculate the survival. The Cox proportional hazards model was used to assess prognostic risk factors. RESULTS: A novel CXCL1+_FAP+ phenotype in CAFs was identified in NPC and then used to divide patients into low and high risk groups. Both in the training cohort and validation cohort, patients in the high risk group had poorer DMFS, overall survival (OS), progression-free survival (PFS) and locoregional relapse-free survival (LRFS) than patients in the low risk group. Multivariate analysis revealed CXCL1+_FAP+ phenotype was an independent prognostic factor for DMFS, OS, PFS and LRFS. Further results showed patients in the high risk group had higher PD-L1 expression than those in the low risk group. CONCLUSION: Our study showed CXCL1+_FAP+ phenotype in CAFs could effectively classified locoregionally advanced NPC patients into different risk groups for distant metastasis and might be a potential biomarker for anti-PD-1/PD-L1 immunotherapy.
Assuntos
Antígeno B7-H1 , Fibroblastos Associados a Câncer , Quimiocina CXCL1 , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Humanos , Antígeno B7-H1/metabolismo , Masculino , Feminino , Carcinoma Nasofaríngeo/metabolismo , Carcinoma Nasofaríngeo/patologia , Carcinoma Nasofaríngeo/mortalidade , Pessoa de Meia-Idade , Neoplasias Nasofaríngeas/metabolismo , Neoplasias Nasofaríngeas/patologia , Neoplasias Nasofaríngeas/mortalidade , Quimiocina CXCL1/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Adulto , Estudos Retrospectivos , Metástase Neoplásica , Prognóstico , Fenótipo , Biomarcadores Tumorais/metabolismo , Idoso , Serina Endopeptidases/metabolismo , Endopeptidases/metabolismo , Proteínas de Membrana/metabolismoRESUMO
Pancreatic cancer (PC) responds weakly to conventional immunotherapy. RNA N6-methyladenosine (m6A) modification has an essential role in the immune response, while its potential role in PC tumor microenvironment (TME) immune cell infiltration remains unknown. In this study, we thoroughly assessed the m6A modification patterns of 472 PC samples using 19 m6A regulators, and we systematically correlated these modification patterns with TME immune cell infiltration characteristics. We also created the m6Ascore and evaluated the m6A modification patterns of individual tumors, identified three different m6A modification patterns, and explored the role of the important m6A "writer" RBM15 in the regulation of macrophage function in PC. Two independent PC cohorts confirmed that patients with higher m6Ascore showed significant survival benefit. We verified that knockdown of RBM15 has the ability to inhibit PC growth and to promote macrophage infiltration and enhance phagocytosis of PC cells by macrophages. In conclusion, m6A modifications play a non-negligible role in the formation of TME diversity and complexity in PC. We reveal that inhibition of RBM15 suppresses PC development and modulates macrophage phagocytosis, and provide a more effective immunotherapeutic strategy for PC.