Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Food Funct ; 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38770619

RESUMO

Probiotic intervention is an effective strategy to alleviate oxidative stress-related diseases. Our previous studies found that Lactiplantibacillus plantarum NJAU-01 (NJAU-01) exhibited antioxidant effects in a D-galactose (D-gal)-induced aging mouse model. However, the underlying mechanism remains to be unveiled. This study was aimed to investigate the ameliorative effect and mechanism of NJAU-01 against oxidative stress induced by D-gal. The results showed that NJAU-01 could reverse the tendency of a slow body weight gain induced by D-gal. NJAU-01 relieved hepatic oxidative stress via increasing the hepatic total antioxidant capacity and antioxidant enzyme activities including superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and catalase (CAT). Moreover, the malondialdehyde (MDA) level was reversed after NJAU-01 supplementation. The proteomic results showed that there were 201 differentially expressed proteins (DEPs) between NJAU-01 and D-gal groups. NJAU-01 regulated the expressions of glutathione S-transferase Mu 5 (Gstm5), glutathione S-transferase P2 (Gstp2) and NADH dehydrogenase 1α subcomplex subunit 7 (Ndufa7) related to oxidative stress, and autophagy protein 5 (Atg5) and plasma alpha-L-fucosidase (Fuca2) involved in autophagy, etc. 16S rDNA sequencing results showed that NJAU-01 supplementation could regulate the gut microbiota dysbiosis induced by D-gal via increasing the relative abundances of the phylum Firmicutes and the genus Lactobacillus and reducing the relative abundances of the phylum Bacteroidetes and the genera Lachnospiraceae_NK4A136_group as well as Prevotellaceae_UCG-001, etc.. Spearman correlation analysis results showed that the altered gut microbiota composition had a significant correlation with antioxidant enzyme activities and the DEPs related to oxidative stress. Overall, NJAU-01 alleviated hepatic oxidative stress induced by D-gal via manipulating the gut microbiota composition and hepatic protein expression profile.

2.
J Control Release ; 370: 626-642, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38734314

RESUMO

Severe nephrotoxicity and infusion-related side effects pose significant obstacles to the clinical application of Amphotericin B (AmB) in life-threatening systemic fungal infections. In pursuit of a cost-effective and safe formulation, we have introduced multiple phenylboronic acid (PBA) moieties onto a linear dendritic telodendrimer (TD) scaffold, enabling effective AmB conjugation via boronate chemistry through a rapid, high yield, catalysis-free and dialysis-free "Click" drug loading process. Optimized AmB-TD prodrugs self-assemble into monodispersed micelles characterized by small particle sizes and neutral surface charges. AmB prodrugs sustain drug release in circulation, which is accelerated in response to the acidic pH and Reactive Oxygen Species (ROS) in the infection and inflammation. Prodrugs mitigate the AmB aggregation status, reduce cytotoxicity and hemolytic activity compared to Fungizone®, and demonstrate superior antifungal activity to AmBisome®. AmB-PEG5kBA4 has a comparable maximum tolerated dose (MTD) to AmBisome®, while over 20-fold increase than Fungizone®. A single dose of AmB-PEG5kBA4 demonstrates superior efficacy to Fungizone® and AmBisome® in treating systemic fungal infections in both immunocompetent and immunocompromised mice.

3.
J Hazard Mater ; 472: 134541, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38714055

RESUMO

Domoic acid (DA)-producing algal blooms are a global marine environmental issue. However, there has been no previous research addressing the question regarding the fate of DA in marine benthic environments. In this work, we investigated the DA fate in the water-sediment microcosm via the integrative analysis of a top-down metabolic model, metagenome, and metabolome. Results demonstrated that biodegradation is the leading mechanism for the nonconservative attenuation of DA. Specifically, DA degradation was prominently completed by the sediment aerobic community, with a degradation rate of 0.0681 ± 0.00954 d-1. The DA degradation pathway included hydration, dehydrogenation, hydrolysis, decarboxylation, automatic ring opening of hydration, and ß oxidation reactions. Moreover, the reverse ecological analysis demonstrated that the microbial community transitioned from nutrient competition to metabolic cross-feeding during DA degradation, further enhancing the cooperation between DA degraders and other taxa. Finally, we reconstructed the metabolic process of microbial communities during DA degradation and confirmed that the metabolism of amino acid and organic acid drove the degradation of DA. Overall, our work not only elucidated the fate of DA in marine environments but also provided crucial insights for applying metabolic models and multi-omics to investigate the biotransformation of other contaminants.

4.
Eur J Med Chem ; 273: 116493, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38761790

RESUMO

The emergence of multidrug-resistant bacteria along with a declining pipeline of clinically useful antibiotics has led to the urgent need for the development of more effective antibacterial agents to treat drug-resistant bacteria. We previously discovered compound OB-158 with potent antibacterial activity but exhibited poor oral bioavailability. Herein, a systematic structural optimization of OB-158 to improve pharmacokinetic profiles yielded 26 novel biaryloxazolidinone analogues, and their activities against Gram-positive S. aureus, multidrug resistant S. aureus and Enterococcus faecalis were evaluated. Remarkably, compound 8b was identified with potent antibacterial activity against S. aureus (MIC = 0.06 µg/mL), MSSA (MIC = 0.125 µg/mL), MRSA (MIC = 0.06 µg/mL), LRSA (MIC = 0.125 µg/mL) and LREFa (MIC = 0.5 µg/mL). Compound 8b was demonstrated as a promising candidate through druglikeness evaluation including metabolism in microsomes and plasma, Caco-2 cell permeability, plasma protein binding, cytotoxicity, and inhibition of CYP450 and human monoamine oxidase. Notably, compound 8b displayed excellent PK profile with appropriate T1/2 of 1.49 h, high peak plasma concentration (Cmax = 2320 ng/mL), high plasma exposure (AUC0-t = 8310 h ng/mL), and superior oral bioavailability (F = 68.1 %) in Sprague-Dawley rats. Ultimately, in vivo efficacy of compound 8b in a mouse model of LRSA systemic infection was also demonstrated. Taken together, compound 8b represents a promising drug candidate for the treatment of linezolid-resistant Gram-positive bacterial strains infection.

5.
Plant Cell Environ ; 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619176

RESUMO

Plant viral diseases compromise the growth and yield of the crop globally, and they tend to be more serious under extreme temperatures and drought climate changes. Currently, regulatory dynamics during plant development and in response to virus infection at the plant cell level remain largely unknown. In this study, single-cell RNA sequencing on 23 226 individual cells from healthy and tomato chlorosis virus-infected leaves was established. The specific expression and epigenetic landscape of each cell type during the viral infection stage were depicted. Notably, the mesophyll cells showed a rapid function transition in virus-infected leaves, which is consistent with the pathological changes such as thinner leaves and decreased chloroplast lamella in virus-infected samples. Interestingly, the F-box protein SKIP2 was identified to play a pivotal role in chlorophyll maintenance during virus infection in tomato plants. Knockout of the SlSKIP2 showed a greener leaf state before and after virus infection. Moreover, we further demonstrated that SlSKIP2 was located in the cytomembrane and nucleus and directly regulated by ERF4. In conclusion, with detailed insights into the plant responses to viral infections at the cellular level, our study provides a genetic framework and gene reference in plant-virus interaction and breeding in the future research.

6.
Phytomedicine ; 128: 155495, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38471317

RESUMO

BACKGROUND: Ginsenosides have received increased amounts of attention due to their ability to modulate the intestinal flora, which may subsequently alleviate alcoholic liver disease (ALD). The effects of ginseng fermentation solution (GFS) on the gut microbiota and metabolism in ALD patients have not been explored. PURPOSE: This research aimed to explore the regulatory effect of GFS on ALD both in vitro and in vivo. METHOD: This study assessed the anti-ALD efficacy of GFS using an LO2 cell model and a zebrafish model. Untargeted metabolomics was used for differentially abundant metabolite analysis, and high-throughput 16S rRNA sequencing was used to examine the effect of GFS on ALD. RESULTS: The LO2 cell line experiments demonstrated that GFS effectively mitigated alcohol-induced oxidative stress and reduced apoptosis by upregulating PI3K and Bcl-2 expression and decreasing the levels of malondialdehyde, total cholesterol, and triglycerides. In zebrafish, GFS improved morphological and physiological parameters and diminished oxidative stress-induced ALD. Meanwhile, the results from Western blotting indicated that GFS enhanced the expression of PI3K, Akt, and Bcl-2 proteins while reducing Bax protein expression, thereby ameliorating the ALD model in zebrafish. Metabolomics data revealed significant changes in a total of 46 potential biomarkers. Among them, metabolites such as prostaglandin F2 alpha belong to arachidonic acid metabolism. In addition, GFS also partly reversed the imbalance of gut microbiota composition caused by alcohol. At the genus level, alcohol consumption elevated the presence of Flectobacillus, Curvibacter, among others, and diminished Elizabethkingia within the intestinal microbes of zebrafish. Conversely, GFS reversed these effects, notably enhancing the abundance of Proteobacteria and Archaea. Correlation analyses further indicated a significant negative correlation between prostaglandin F2 alpha, 11,14,15-THETA, Taurocholic acid and Curvibacter. CONCLUSION: This study highlights a novel mechanism by which GFS modulates anti-ALD activity through the PI3K/Akt signalling pathway by influencing the intestinal flora-metabolite axis. These results indicate the potential of GFS as a functional food for ALD treatment via modulation of the gut flora.


Assuntos
Fermentação , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Panax , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Peixe-Zebra , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Panax/química , Hepatopatias Alcoólicas/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ginsenosídeos/farmacologia , Modelos Animais de Doenças , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Humanos , Apoptose/efeitos dos fármacos
7.
Front Nutr ; 11: 1306226, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515521

RESUMO

Background: Malnutrition is the most common nutritional issue in Alzheimer's disease (AD) patients, but there is still a lack of a comprehensive evaluation of the nutritional status in AD patients. This study aimed to determine the potential association of various nutritional indices with AD at different stages. Methods: Subjects, including individuals with normal cognition (NC) and patients diagnosed with AD, were consecutively enrolled in this cross-sectional study. Demographics, body composition, dietary patterns, nutritional assessment scales and nutrition-related laboratory variables were collected. Binary logistics regression analyses and receiver operating characteristic (ROC) curves were used to indicate the association between nutrition-related variables and AD at different stages. Results: Totals of 266 subjects, including 73 subjects with NC, 72 subjects with mild cognitive impairment due to AD (AD-MCI) and 121 subjects with dementia due to AD (AD-D) were included. There was no significant difference in dietary patterns, including Mediterranean diet and Mediterranean-DASH diet intervention for neurodegenerative delay (MIND) diet between the three groups. Lower BMI value, smaller hip and calf circumferences, lower Mini Nutritional Assessment (MNA) and Geriatric Nutritional Risk Index (GNRI) scores, and lower levels of total protein, albumin, globulin, and apolipoprotein A1 were associated with AD (all p < 0.05). Total protein and albumin levels had the greatest ability to distinguish AD from non-AD (AUC 0.80, 95% CI 0.74-0.84, p < 0.001), increased by combining calf circumference, MNA score and albumin level (AUC 0.83, 95% CI 0.77-0.88, p < 0.001). Albumin level had the greatest ability to distinguish NC from AD-MCI (AUC 0.75, 95% CI 0.67-0.82, p < 0.001), and MNA score greatest ability to distinguish AD-MCI from AD-D (AUC 0.72, 95% CI 0.65-0.78, p < 0.001). Conclusion: Nutritional status of AD patients is significantly compromised compared with normal controls, and tends to be worsened with AD progresses. Early identification and intervention of individuals with nutritional risk or malnutrition may be significantly beneficial for reducing the risk, development, and progression of AD.

8.
Cell Biol Int ; 48(5): 726-736, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38439187

RESUMO

Cellular senescence is an irreversible cell-cycle arrest in response to a variety of cellular stresses, which contribute to the pathogenesis of a variety of age-related degenerative diseases. However, effective antisenescence strategies are still lacking. Drugs that selectively target senescent cells represent an intriguing therapeutic strategy to delay aging and age-related diseases. Thus, we thought to investigate the effects of dihydroartemisinin (DHA) on senescent cells and elucidated its mechanisms underlying aging. Stress-induced premature senescence (SIPS) model was built in NIH3T3 cells using H2O2 and evaluated by ß-galactosidase staining. Cells were exposed to DHA and subjected to cellular activity assays including viability, ferroptosis, and autophagy. The number of microtubule-associated protein light-chain 3 puncta was detected by immunofluorescence staining. The iron content was assessed by spectrophotometer and intracellular reactive oxygen species (ROS) was measured by fluorescent probe dichlorodihydrofluorescein diacetate. We found that DHA triggered senescent cell death via ferroptosis. DHA accelerated ferritin degradation via promoting autophagy, increasing the iron contents, promoting ROS accumulation, thus leading to ferroptotic cell death in SIPS cells. In addition, autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. Moreover, Atg5 silencing and autophagy inhibitor BafA1 preconditioning inhibited ferroptosis induced by DHA. We also revealed that the expression of p-AMP-activated protein kinase (AMPK) and p-mammalian target of rapamycin (mTOR) in senescent cells was downregulated. These results suggested that DHA may be a promising drug candidate for clearing senescent cells by inducing autophagy-dependent ferroptosis via AMPK/mTOR signaling pathway.


Assuntos
Proteínas Quinases Ativadas por AMP , Artemisininas , Ferroptose , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Senescência Celular , Peróxido de Hidrogênio/farmacologia , Ferro , Células NIH 3T3 , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
9.
World J Gastroenterol ; 30(2): 158-169, 2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38312121

RESUMO

BACKGROUND: Tumor budding (TB) has emerged as a promising independent prognostic biomarker in colorectal cancer (CRC). The prognostic role of TB has been extensively studied and currently affects clinical decision making in patients with stage I and II CRC. However, existing prognostic studies on TB in stage III CRC have been confined to small retrospective cohort studies. Consequently, this study investigated the correlation among TB categories, clinicopathological features, and prognosis in stage III-IV CRC to further enhance the precision and individualization of treatment through refined prognostic risk stratification. AIM: To analyze the relationship between TB categories and clinicopathological characteristics and assess their prognostic value in stage III-IV CRC to further refine the prognostic risk stratification of stage III-IV CRC. METHODS: The clinical data of 547 CRC patients were collected for this retrospective study. Infiltration at the front edge of the tumor buds was counted according to the 2016 International Tumor Budding Consensus Conference guidelines. RESULTS: Multivariate Cox proportional hazards regression analysis demonstrated that chemotherapy (P = 0.004), clinical stage IV (P < 0.001), ≥ 4 regional lymph node metastases (P = 0.004), left-sided colonic cancer (P = 0.040), and Bd 2-3 (P = 0.002) were independent prognostic factors in patients with stage III-IV CRC. Moreover, the density of tumor infiltrating lymphocytes was higher in Bd 1 than in Bd 2-3, both in the tumor stroma and its invasive margin. CONCLUSION: TB has an independent predictive prognostic value in patients with stage III-IV CRC. It is recommended to complete the TB report of stage III-IV CRC cases in the standardized pathological report to further refine risk stratification.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Humanos , Prognóstico , Estudos Retrospectivos , Estadiamento de Neoplasias , Neoplasias Colorretais/patologia , Neoplasias do Colo/patologia
10.
Chin Med ; 19(1): 9, 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38218825

RESUMO

Wu-tou decoction (WTD), a traditional Chinese medicine prescription, is used to treat rheumatoid arthritis (RA). It works by controlling intestinal flora and its metabolites, which in turn modulates the inflammatory response and intestinal barrier function. Small molecular compounds (SM) and polysaccharides (PS) were the primary constituents of WTD extract. In this work, a model of adjuvant-induced arthritis (AIA) in rats was established and treated with WTD, SM, and PS, respectively. 16S rRNA gene sequencing was used to examine the regulatory impact of the various groups on the disturbance of the gut flora induced by RA. Further, since PS cannot be absorbed into the blood, the influence of PS on the absorption and metabolism of SM was studied by examining their pharmacokinetic (PK) parameters of 23 active components in SM by UPLC-MS/MS. WTD was found to be more effective than PS and SM in alleviating arthritis in AIA rats, which may be related to changes in gut flora. The PK properties of 13 active compounds were altered after PS intervene. Based on the findings, PS may be able to manage the disruption of intestinal microbiota, enhance the intestinal environment of model animals, and hence influence SM absorption and metabolism.

11.
Toxics ; 12(1)2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38250990

RESUMO

The chemical complexity and toxicity of volatile organic compounds (VOCs) are primarily encountered through intensive anthropogenic emissions in suburban areas. Here, pollution characteristics, impacts on secondary pollution formation, and health risks were investigated through continuous in-field measurements from 1-30 June 2020 in suburban Nanjing, adjacent to national petrochemical industrial parks in China. On average, the total VOCs concentration was 34.47 ± 16.08 ppb, which was comprised mostly by alkanes (41.8%) and halogenated hydrocarbons (29.4%). In contrast, aromatics (17.4%) dominated the ozone formation potential (OFP) and secondary organic aerosol formation potential (SOAFP) with 59.6% and 58.3%, respectively. Approximately 63.5% of VOCs were emitted from the petrochemical industry and from solvent usage based on source apportionment results, followed by biogenic emissions of 22.3% and vehicle emissions of 14.2%. Of the observed 46 VOC species, hexachlorobutadiene, dibromoethane, butadiene, tetrachloroethane, and vinyl chloride contributed as high as 98.8% of total carcinogenic risk, a large fraction of which was ascribed to the high-level emissions during ozone pollution episodes and nighttime. Therefore, the mitigation of VOC emissions from petrochemical industries would be an effective way to reduce secondary pollution and potential health risks in conurbation areas.

12.
J Food Sci ; 89(3): 1727-1738, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258958

RESUMO

Sea cucumber intestines are considered a valuable resource in the sea cucumber processing industry due to their balanced amino acid composition. Studies have reported that peptides rich in glutamate and branched-chain amino acids have anti-fatigue properties. However, the function of the sea cucumber intestine in reducing exercise-induced fatigue remains unclear. In this study, we enzymatically hydrolyzed low molecular weight peptides from sea cucumber intestines (SCIP) and administered SCIP orally to mice to examine its effects on exercise-induced fatigue using swimming and pole-climbing exhaustion experiments. The results revealed that supplementation with SCIP significantly prolonged the exhaustion time of swimming in mice, decreased blood lactate and urea nitrogen levels, and increased liver and muscle glycogen levels following a weight-loaded swimming test. Immunofluorescence analysis indicated a notable increase the proportion of slow-twitch muscle fiber and a significant decrease the proportion of fast-twitch muscle fiber following SCIP supplementation. Furthermore, SCIP upregulated mRNA expression levels of Ca2+ /Calcineurin upstream and downstream regulators, thereby contributing to the promotion of skeletal muscle fiber type conversion. This study presents the initial evidence establishing SCIP as a potential enhancer of skeletal muscle fatigue resistance, consequently providing a theoretical foundation for the valuable utilization of sea cucumber intestines.


Assuntos
Calcineurina , Pepinos-do-Mar , Camundongos , Animais , Calcineurina/metabolismo , Calcineurina/farmacologia , Pepinos-do-Mar/metabolismo , Músculo Esquelético/metabolismo , Peptídeos/farmacologia , Natação/fisiologia , Transdução de Sinais , Intestinos , Peptídeo Hidrolases/metabolismo
13.
CNS Neurosci Ther ; 30(4): e14502, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-37950363

RESUMO

AIMS: This study aimed to comprehensively explore the nutrition and gait of AD patients at different stages and the relationship between them. METHODS: A total of 85 AD patients were consecutively enrolled in this cross-sectional study and divided into the mild cognitive impairment (MCI) due to AD (AD-MCI) and the dementia due to AD (AD-D) groups. Demographic information, nutritional status, and gait performance were compared between the two groups, and the correlation between nutritional status and gait performance was subsequently analyzed by Pearson and Spearman correlation analyses. RESULTS: The AD-D group had lower scores on Mini-Nutritional Assessment (MNA) and MNAm scales, lower levels of urea nitrogen, folic acid, and vitamin B12 in blood, and higher homocysteine level than those in the AD-MCI group (all p < 0.05). The AD-D group had slower step speed, shorter step length, and shorter stride length than those in the AD-MCI group (all p < 0.05). AD patients with decreased scores of MNA and MNAm scales, and declined levels of urea nitrogen and vitamin B12 in blood had reduced gait speed and gait cadence, and prolonged step length time and stride length time, whereas homocysteine showed the almost opposite results (all p < 0.05). In the AD-MCI group, the score of scale was negatively correlated with the coefficient of variation (CV) of stride length, and the folic acid level was negatively correlated with the CV of stride length and cadence (all p < 0.05). CONCLUSIONS: AD patients at the dementia stage had worse nutritional status and gait performance than those at the MCI stage, which was associated with worse global cognition and activities of daily living. Poorer nutritional status was associated with higher gait variability in patients at the MCI stage and with poorer gait performance in patients at the dementia stage. Early identification and intervention of patients with nutritional risk or malnutrition may improve gait performance, thus reducing the risk of falling and cognitive decline, as well as the mortality.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/complicações , Estado Nutricional , Atividades Cotidianas , Estudos Transversais , Disfunção Cognitiva/psicologia , Marcha , Ácido Fólico , Homocisteína , Nitrogênio , Vitaminas , Ureia
14.
CNS Neurosci Ther ; 30(3): e14440, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37697966

RESUMO

AIMS: To explore the roles of apolipoprotein E (APOE) ε4 on the neuropathology and neuroinflammation in Alzheimer's disease (AD) patients. METHODS: AD patients were divided into the APOE ε4 carrier and the APOE ε4 non-carrier groups according to APOE genotype. Demographic information, cognitive function, the levels of neuropathological proteins and neuroinflammatory factors in cerebrospinal fluid (CSF) were compared between the two groups, and their correlations were subsequently analyzed. RESULTS: ß amyloid protein (Aß)1-42 level from the APOE ε4 carrier group was significantly lower than that from the non-carrier group (p = 0.023), which was associated with worse cognitive function. The nitric oxide (NO) level was significantly elevated in the APOE ε4 carrier group compared to the non-carrier group (p = 0.016), which was significantly and positively correlated with the Trail Making Test (TMT)-A-time (r = 0.21, p = 0.026) and TMT-B-time (r = 0.38, p < 0.01). CONCLUSION: APOE ε4 is associated with poorer cognition, particularly the early symptoms of memory, language, and attention. APOE ε4 is associated with lower Aß1-42 level, and the more numbers of APOE ε4 are carried, the lower level of Aß1-42 is measured. APOE ε4 is associated with elevated NO level, which is linked to the impaired attention and executive function.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/diagnóstico , Peptídeos beta-Amiloides/genética , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Genótipo , Doenças Neuroinflamatórias
15.
Rapid Commun Mass Spectrom ; 38(2): e9664, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38124169

RESUMO

RATIONALE: TongFu XieXia Decoction (TFXXD), a formulation rooted in traditional Chinese medicine and optimized through clinical practice, serves as an advanced version of the classic Da Cheng Qi decoction used for treating intestinal obstruction (IO), demonstrating significant therapeutic efficacy. However, due to the intricate nature of herbal compositions, the principal constituents and potential mechanisms of TFXXD have yet to be clarified. Accordingly, this study seeks to identify the active compounds and molecular targets of TFXXD, as well as to elucidate its anti-IO mechanisms. METHODS: Qualitative identification of the principal constituents of TFXXD was accomplished using ultra-high preformance liquid chromatography-quadrupole-orbitrap mass spectrometry (UPLC-Q-Orbitrap-MS/MS) analysis. PharmMapper facilitated the prediction of potential molecular targets, whereas protein-protein interaction analysis was conducted using STRING 11.0. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed using the Metascape database. A "compounds-target-pathway" network was meticulously constructed within Cytoscape 3.8.2. Finally, molecular docking studies were performed to investigate the interactions between the core target and the crucial compound. RESULTS: UPLC-Q-Orbitrap-MS/MS analysis identified 65 components with high precision and sensitivity. Furthermore, 64 potential targets were identified as integral to TFXXD bioactivity in IO treatment. Gene Ontology enrichment analysis revealed 995 distinct biological functions, while the Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 143 intricate signaling pathways. CONCLUSION: Molecular docking studies substantiated the substantial affinity between the TFXXD bioactive constituents and their corresponding targets in the context of IO. TFXXD exerts its therapeutic efficacy in IO through a multifaceted interplay between multiple compounds, targets, and pathways. The integration of network pharmacology with UPLC-Q-Orbitrap-MS/MS has emerged as a promising strategy to unravel the intricate web of molecular interactions underlying herbal medicine. However, it is imperative to emphasize the necessity for further in vivo and in vitro experiments.


Assuntos
Medicamentos de Ervas Chinesas , Obstrução Intestinal , Humanos , Farmacologia em Rede , Cromatografia Líquida de Alta Pressão , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Obstrução Intestinal/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico
16.
Mol Nutr Food Res ; 68(2): e2300344, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100188

RESUMO

SCOPE: Hypertrophic chondrocytes have a decisive regulatory role in the process of fracture healing, and the fate of hypertrophic chondrocytes is not only apoptosis. However, the mechanism of sea cucumber (Stichopus japonicus) intestinal peptide (SCIP) on fracture promotion is still unclear. This study aims to investigate the effect of sea cucumber intestinal peptide on the differentiation fate of hypertrophic chondrocytes in a mouse tibial fracture model. METHODS AND RESULTS: Mice are subjected to open fractures of the right tibia to establish a tibial fracture model. The results exhibit that the SCIP intervention significantly promotes the mineralization of cartilage callus, decreases the expression of the hypertrophic chondrocyte marker Col X, and increases the expression of the osteoblast marker Col I. Mechanically, SCIP promotes tibial fracture healing by promoting histone acetylation and inhibiting histone methylation, thereby upregulating pluripotent transcription factors induced the differentiation of hypertrophic chondrocytes to the osteoblast lineage in a manner distinct from classical endochondral ossification. CONCLUSION: This study is the first to report that SCIP can promote tibial fracture healing in mice by inducing the differentiation of hypertrophic chondrocytes to the osteoblast lineage. SCIP may be considered raw material for developing nutraceuticals to promote fracture healing.


Assuntos
Pepinos-do-Mar , Fraturas da Tíbia , Camundongos , Animais , Condrócitos/metabolismo , Consolidação da Fratura/fisiologia , Tíbia , Histonas/metabolismo , Osteoblastos/metabolismo , Osteogênese/fisiologia , Fraturas da Tíbia/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Diferenciação Celular
17.
CNS Neurosci Ther ; 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38112032

RESUMO

AIMS: To investigate the roles of neurotrophic factors on cognition in patients with Alzheimer's disease (AD) carrying Apolipoprotein E (APOE) ε4. METHODS: Totals of 173 patients with AD were divided into APOE ε4 carrier and non-carrier groups, and their demographics, cognition, and neurotrophic factors in cerebrospinal fluid (CSF) were compared. Multiple linear regression analyses were performed to assess correlations among APOE ε4, neurotrophic factors and cognition. Mediation analyses were conducted to assess the sequential associations among APOE ε4, nerve growth factor (NGF), and cognition. RESULTS: Global cognition and multiple domains were impaired in the APOE ε4 carrier group (all p < 0.05). NGF level in the APOE ε4 carrier group was lower than that in the non-carrier group (p = 0.016). NGF level showed significant correlations with both global and multiple domains cognitions. Specifically, NGF mediated the association between APOE ε4 and Animal Fluency Test score (ß, -0.45; 95% CI [-0.96, -0.07]; p < 0.001) and Trail Making Test-A (time) (ß, 0.15; 95% CI [0.01, 0.33]; p < 0.001). CONCLUSION: APOE ε4 is associated with cognitive impairment, and those carrying APOE ε4 have decreased NGF level in CSF. Declined NGF level is correlated with compromised cognition. NGF mediates APOE ε4-associated cognitive impairment.

18.
Rapid Commun Mass Spectrom ; 37(23): e9640, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37942687

RESUMO

RATIONALE: Spleen-qi deficiency syndrome, a common weakness syndrome in traditional Chinese medicine, results from insufficient spleen-qi levels. For centuries, ginseng has been relied upon as a traditional Chinese medicine to treat spleen-qi deficiency syndrome. Until now, the mechanism feature of ginseng in treating temper deficiency through intestinal bacteria and short-chain fatty acid (SCFA) metabolites has not been fully elucidated. METHODS: This study established a rat model of spleen-qi deficiency via multi-factor compound modeling that involved fatigue injury and a controlled diet. The content of SCFAs between different treatment groups was determined by gas chromatography-mass spectrometry. And the 16s rRNA sequencing technology was applied to reveal the effects of ginseng on the intestinal microecological environment of the rats. RESULTS: It was found that the ginseng treatment group exhibited the most remarkable regulatory effect on propionic acid, surpassing all other administration groups. Ginseng increased the relative abundance of beneficial bacteria and decreased that of harmful bacteria at the genus level in rats with spleen-qi deficiency syndrome. And propionic acid is significantly positively correlated with Lactobacillus level and significantly negatively correlated with uncultured_bacterium_f_Muribaculaceae (p < 0.05). n-Butyric acid is negatively correlated with the Faecalibaculum level (p < 0.01). n-Valeric acid is significantly negatively correlated with the Romboutsia level (p < 0.01). CONCLUSION: The mechanism of ginseng treatment for spleen-qi deficiency is elucidated from the perspective of gut microbiota and its metabolite SCFAs. It provides a new way for further development and utilization of ginseng and a theoretical basis.


Assuntos
Medicamentos de Ervas Chinesas , Microbioma Gastrointestinal , Panax , Ratos , Animais , Baço , RNA Ribossômico 16S/genética , Qi , Cromatografia Gasosa-Espectrometria de Massas , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Panax/química , Ácidos Graxos Voláteis
19.
Heliyon ; 9(11): e21486, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027600

RESUMO

Originally extracted from Momordica charantia seeds, the antiviral and anti-tumor activities of Momordica anti-HIV protein MAP30 have become well known. Although MAP30 has been reported to possess antiviral activity against several human viruses, the current understanding of the MAP30-mediated antiviral response is mainly derived from the previous research work on anti-HIV herbal medicines; the mechanistic insight of its effects on other viruses remains largely unknown. In this study, we showed that both ectopically expressed and purified recombinant MAP30 (rMAP30) impeded Epstein-Barr virus Nuclear Antigen 1 (EBNA1)-mediated transcription from the viral latent replication origin. Mechanistically, in vivo and in vitro studies revealed that MAP30 caused EBNA1 to dissociate from the cognate binding sites, which disrupted downstream EBNA1-dependent viral epigenome accumulation and cell maintenance of Epstein-Barr virus (EBV)-associated neoplastic cells. Finally, mutational analysis indicated that the N-terminal ricin A homologous domain shared by ricin-like proteins was implicated in the anti-EBV response. Our study provides evidence to support that MAP30 has a unique property to combat EBV latent infection, suggesting a potential to develop this herbal protein to be an alternative medicine for EBV associated diseases.

20.
Nat Commun ; 14(1): 7873, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036528

RESUMO

As a red tide algal toxin with intense neurotoxicity distributed worldwide, domoic acid (DA) has attracted increasing concerns. In this work, the integrative analysis of metagenome and metabolome are applied to investigate the impact of DA on nitrogen cycling in coastal sediments. Here we show that DA can act as a stressor to induce the variation of nitrogen (N) cycling by altering the abundance of functional genes and electron supply. Moreover, microecology theory revealed that DA can increase the role of deterministic assembly in microbial dynamic succession, resulting in the shift of niches and, ultimately, the alteration in N cycling. Notably, denitrification and Anammox, the important process for sediment N removal, are markedly limited by DA. Also, variation of N cycling implies the modification in cycles of other associated elements. Overall, DA is capable of ecosystem-level effects, which require further evaluation of its potential cascading effects.


Assuntos
Ecossistema , Sedimentos Geológicos , Ciclo do Nitrogênio , Nitrogênio/análise , Desnitrificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA