Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Virus Res ; 343: 199343, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38423214

RESUMO

African swine fever (ASF), caused by the ASF virus (ASFV), is a hemorrhagic and fatal viral disease that affects Eurasian wild boars and domestic pigs, posing a substantial threat to the global pig breeding industry. ASFV, a double-stranded DNA virus, possesses a large genome containing up to 160 open reading frames, most of which exhibit unknown functions. The B125R gene of ASFV, located at the 105595-105972 bp site in the ASFV-SY18 genome, remains unexplored. In this study, we discovered that B125R deletion did not affect recombinant virus rescue, nor did it hinder viral replication during the intermediate growth phase. Although the virulence of the recombinant strain harboring this deletion was attenuated, intramuscular inoculation of the recombinant virus in pigs at doses of 102 or 104 TCID50 resulted in mortality. Moreover, sequencing analysis of six recombinant strains obtained from three independent experiments consistently revealed an adenine insertion at the 47367-47375 bp site in the A104R gene due to the B125R deletion, leading to premature termination of this gene. Intriguingly, this insertion did not influence the transcription of the A104R gene between the recombinant and parental strains. Consequently, we postulate that the deletion of the B125R gene in ASFV-SY18 or other genotype II strains may marginally attenuate virulence in domestic pigs.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Sus scrofa , Virulência , Mutação da Fase de Leitura , Deleção de Genes
2.
Pathogens ; 13(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38392841

RESUMO

(1) Background: African swine fever (ASF) is a highly contagious disease that causes high pig mortality. Due to the absence of vaccines, prevention and control are relatively challenging. The pathogenic African swine fever virus (ASFV) has a complex structure and encodes over 160 proteins, many of which still need to be studied and verified for their functions. In this study, we identified one of the unknown functional genes, C84L. (2) Methods: A gene deficient strain was obtained through homologous recombination and several rounds of purification, and its replication characteristics and virulence were studied through in vitro and in vivo experiments, respectively. (3) Results: Deleting this gene from the wild-type virulent strain SY18 did not affect its replication in porcine primary macrophages but reduced its virulence in pigs. In animal experiments, we injected pigs with a 102 TCID50, 105 TCID50 deletion virus, and a 102 TCID50 wild-type strain SY18 intramuscularly. The control group pigs reached the humane endpoint on the ninth day (0/5) and were euthanized. Two pigs in the 102 TCID50(2/5) deletion virus group survived on the twenty-first day, and one in the 105 TCID50(1/5) deletion virus group survived. On the twenty-first day, the surviving pigs were euthanized, which was the end of the experiment. The necropsies of the survival group and control groups' necropsies showed that the surviving pigs' liver, spleen, lungs, kidneys, and submaxillary lymph nodes did not show significant lesions associated with the ASFV. ASFV-specific antibodies were first detected on the seventh day after immunization; (4) Conclusions: This is the first study to complete the replication and virulence functional exploration of the C84L gene of SY18. In this study, C84L gene was preliminarily found not a necessary gene for replication, gene deletion strain SY18ΔC84L has similar growth characteristics to SY18 in porcine primary alveolar macrophages. The C84L gene affects the virulence of the SY18 strain.

3.
Front Microbiol ; 15: 1345236, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38328426

RESUMO

Introduction: African swine fever (ASF) is an infectious disease that causes considerable economic losses in pig farming. The agent of this disease, African swine fever virus (ASFV), is a double-stranded DNA virus with a capsid membrane and a genome that is 170-194 kb in length encoding over 150 proteins. In recent years, several live attenuated strains of ASFV have been studied as vaccine candidates, including the SY18ΔL7-11. This strain features deletion of L7L, L8L, L9R, L10L and L11L genes and was found to exhibit significantly reduced pathogenicity in pigs, suggesting that these five genes play key roles in virulence. Methods: Here, we constructed and evaluated the virulence of ASFV mutations with SY18ΔL7, SY18ΔL8, SY18ΔL9, SY18ΔL10, and SY18ΔL11L. Results: Our findings did not reveal any significant differences in replication efficiency between the single-gene deletion strains and the parental strains. Pigs inoculated with SY18ΔL8L, SY18ΔL9R and SY18ΔL10L exhibited clinical signs similar to those inoculated with the parental strains. Survival rate of pigs inoculated with 103.0TCID50 of SY18ΔL7L was 25%, while all pigs inoculated with 103.0TCID50 of SY18ΔL11L survived, and 50% inoculated with 106.0TCID50 SY18ΔL11L survived. Discussion: The results indicate that L8L, L9R and L10L do not affect ASFV SY18 virulence, while the L7L and L11L are associated with virulence.

4.
Front Microbiol ; 14: 1225469, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37621401

RESUMO

Introduction: African swine fever (ASF) is an acute and highly contagious disease and its pathogen, the African swine fever virus (ASFV), threatens the global pig industry. At present, management of ASF epidemic mainly relies on biological prevention and control methods. Moreover, due to the large genome of ASFV, only half of its genes have been characterized in terms of function. Methods: Here, we evaluated a previously uncharacterized viral gene, L60L. To assess the function of this gene, we constructed a deletion strain (SY18ΔL60L) by knocking out the L60L gene of the SY18 strain. To evaluate the growth characteristics and safety of the SY18ΔL60L, experiments were conducted on primary macrophages and pigs, respectively. Results: The results revealed that the growth trend of the recombinant strain was slower than that of the parent strain in vitro. Additionally, 3/5 (60%) pigs intramuscularly immunized with a 105 50% tissue culture infectious dose (TCID50) of SY18ΔL60L survived the 21-day observation period. The surviving pigs were able to protect against the homologous lethal strain SY18 and survive. Importantly, there were no obvious clinical symptoms or viremia. Discussion: These results suggest that L60L could serve as a virulence- and replication-related gene. Moreover, the SY18ΔL60L strain represents a new recombinant live-attenuated ASFV that can be employed in the development of additional candidate vaccine strains and in the elucidation of the mechanisms associated with ASF infection.

5.
Viruses ; 15(4)2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-37112870

RESUMO

African swine fever (ASF) is an acute infectious disease of domestic pigs and wild boars caused by the African swine fever virus (ASFV), with up to a 100% case fatality rate. The development of a vaccine for ASFV is hampered by the fact that the function of many genes in the ASFV genome still needs to be discovered. In this study, the previously unreported E111R gene was analyzed and identified as an early-expressed gene that is highly conserved across the different genotypes of ASFV. To further explore the function of the E111R gene, a recombinant strain, SY18ΔE111R, was constructed by deleting the E111R gene of the lethal ASFV SY18 strain. In vitro, the replication kinetics of SY18ΔE111R with deletion of the E111R gene were consistent with those of the parental strain. In vivo, high-dose SY18ΔE111R (105.0 TCID50), administered intramuscularly to pigs, caused the same clinical signs and viremia as the parental strain (102.0 TCID50), with all pigs dying on days 8-11. After being infected with a low dose of SY18ΔE111R (102.0 TCID50) intramuscularly, pigs showed a later onset of disease and 60% mortality, changing from acute to subacute infection. In summary, deletion of the E111R gene has a negligible effect on the lethality of ASFV and does not affect the viruses' ability to replicate, suggesting that E111R could not be the priority target of ASFV live-attenuated vaccine candidates.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Virulência/genética , Deleção de Genes , Proteínas Virais/genética , Sus scrofa , Replicação Viral
6.
J Virol ; 95(23): e0119921, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34495696

RESUMO

African swine fever (ASF) is a severe hemorrhagic infectious disease in pigs caused by African swine fever virus (ASFV), leading to devastating economic losses in epidemic regions. Its control currently depends on thorough culling and clearance of the diseased and surrounding suspected pigs. An ASF vaccine has been extensively explored for years worldwide, especially in hog-intensive areas where it is highly desired, but it is still unavailable for numerous reasons. Here, we report another ASF vaccine candidate, named SY18ΔI226R, bearing a deletion of the I226R gene with a replacement of an enhanced green fluorescent protein (eGFP) expression cassette at the right end of the viral genome. This deletion results in the complete loss of virulence of SY18 as the gene-deleted strain does not cause any clinical symptoms in all pigs inoculated with a dosage of either 104.0 or 107.0 50% tissue culture infective doses (TCID50). Apparent viremia with a gradual decline was monitored, while virus shedding was detected only occasionally in oral or anal swabs. ASFV-specific antibody appeared at 9 days postinoculation. After intramuscular challenge with its parental strain ASFV SY18 at 21 days postinoculation, all the challenged pigs survived, without obvious febrile or abnormal clinical signs. No viral DNA could be detected upon the dissection of any tissue when viremia disappeared. These results indicated that SY18ΔI226R is safe in swine and elicits robust immunity to virulent ASFV infection. IMPORTANCE Outbreaks of African swine fever have resulted in devastating losses to the swine industry worldwide, but there is currently no commercial vaccine available. Although several vaccine candidates have been reported, none has been approved for use for several reasons, especially ones concerning biosafety. Here, we identified a new undescribed functional gene, I226R. When deleted from the ASFV genome, the virus completely loses its virulence in swine. Importantly, pigs infected with this gene-deleted virus were resistant to infection by intramuscular challenge with 102.5 or 104.0 TCID50 of its virulent parental virus. Furthermore, the nucleic acid of the gene-deleted virus and its virulent parental virus was rarely detected from oral or anal swabs. Viruses could not be detected in any tissues after necropsy when viremia became negative, indicating that robust immunity was achieved. Therefore, SY18ΔI226R is a novel, ideal, and efficacious vaccine candidate for genotype II ASF.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/imunologia , Deleção de Genes , Genoma Viral , Febre Suína Africana/patologia , Febre Suína Africana/prevenção & controle , Animais , DNA Viral , Genes Virais/genética , Genótipo , Análise de Sequência , Suínos , Vacinas Virais/imunologia , Viremia/genética , Virulência/genética
7.
Viruses ; 13(2)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33567491

RESUMO

African swine fever (ASF), caused by the African swine fever virus (ASFV), is a major epidemic disease endangering the swine industry. Although a number of vaccine candidates have been reported, none are commercially available yet. To explore the effect of unknown genes on the biological characteristics of ASFV and the possibility of a gene-deleted isolate as a vaccine candidate, the strain SY18ΔL7-11, with deletions of L7L-L11L genes from ASFV SY18, was constructed, and its biological properties were analyzed. The results show that deletion of genes L7L-L11L did not affect replication of the virus in vitro. Virulence of SY18△L7-11 was significantly reduced, as 11 of the 12 pigs survived for 28 days after intramuscular inoculation with a low dose (103 TCID50) or a high dose (106 TCID50) of SY18ΔL7-11. All 11 surviving pigs were completely protected against challenge with the parental ASFV SY18 on 28 days postinoculation (dpi). Transient fever and/or irregularly low levels of genomic DNA in the blood were monitored in some pigs after inoculation. No ASF clinical signs or viremia were monitored after challenge. Antibodies to ASFV were induced in all pigs from 14 to 21 days postinoculation. IFN-γ was detected in most of the inoculated pigs, which is usually inhibited in ASFV-infected pigs. Overall, the results demonstrate that SY18ΔL7-11 is a candidate for further constructing safer vaccine(s), with better joint deletions of other gene(s) related to virulence.


Assuntos
Vírus da Febre Suína Africana/imunologia , Febre Suína Africana/prevenção & controle , Genes Virais/genética , Vacinas Virais/genética , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/patogenicidade , Animais , Anticorpos Antivirais/sangue , Células Cultivadas , Deleção de Genes , Injeções Intramusculares , Interferon gama/sangue , Macrófagos/virologia , Suínos , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Virais/administração & dosagem , Virulência/genética
8.
Viruses ; 14(1)2021 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-35062257

RESUMO

African swine fever virus (ASFV) is the causative agent of African swine fever (ASF) which reaches up to 100% case fatality in domestic pigs and wild boar and causes significant economic losses in the swine industry. Lack of knowledge of the function of ASFV genes is a serious impediment to the development of the safe and effective vaccine. Herein, I267L was identified as a relative conserved gene and an early expressed gene. A recombinant virus (SY18ΔI267L) with I267L gene deletion was produced by replacing I267L of the virulent ASFV SY18 with enhanced green fluorescent protein (EGFP) cassette. The replication kinetics of SY18ΔI267L is similar to that of the parental isolate in vitro. Moreover, the doses of 102.0 TCID50 (n = 5) and 105.0 TCID50 (n = 5) SY18ΔI267L caused virulent phenotype, severe clinical signs, viremia, high viral load, and mortality in domestic pigs inoculated intramuscularly as the virulent parental virus strain. Therefore, the deletion of I267L does not affect the replication or the virulence of ASFV. Utilizing the fluorescent-tagged virulence deletant can be easy to gain a visual result in related research such as the inactivation effect of some drugs, disinfectants, extracts, etc. on ASFV.


Assuntos
Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/fisiologia , Fatores de Virulência/genética , Replicação Viral/genética , Febre Suína Africana/virologia , Animais , Anticorpos Antivirais , Deleção de Genes , Fenótipo , Sus scrofa , Suínos , Doenças dos Suínos/virologia , Proteínas Virais/genética , Vacinas Virais/imunologia , Viremia , Virulência/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA