Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38936977

RESUMO

Ovarian cancer is the most lethal gynecological malignancy, with a 5-year survival rate of approximately 50%. The dismal prognosis is due in part to metastatic disease and acquired drug resistance to conventional chemotherapies such as taxanes. Colchicine binding site inhibitors (CBSIs) are attractive alternatives to taxanes because they could potentially achieve oral bioavailability and overcome drug resistance associated with the prolonged use of taxanes. VERU-111 is one of the most advanced CBSIs that is orally available, potent, well-tolerated, and has shown good efficacy in several preclinical solid tumor models. Here, we demonstrate for the first time the in vitro potency of VERU-111 as well as its efficacy at inhibiting tumor growth and metastasis in an orthotopic ovarian cancer mouse model. VERU-111 has nanomolar potency against ovarian cancer cell lines and strongly inhibits colony formation, proliferation, invasion, and migration. VERU-111 disrupts microtubule formation to induce mitotic catastrophe and, ultimately, apoptosis in a concentration-dependent manner. The efficacy of VERU-111 was comparable with standard chemotherapy paclitaxel, the current first-line treatment for ovarian cancer, with no observed synergy with combination paclitaxel + VERU-111 treatment. In vivo, VERU-111 markedly suppressed ovarian tumor growth and completely suppressed distant organ metastasis. Together, these results support VERU-111 for its potential as a novel therapy for ovarian cancer, particularly for late-stage metastatic disease. Significance Statement VERU-111 is an investigational new drug and has comparable efficacy as paclitaxel in suppressing tumor cell proliferation, colony formation, and migration in ovarian cancer models in vitro and has potent in vivo anti-tumor and anti-metastatic activity in an orthotopic ovarian cancer mouse model. VERU-111 has low systemic toxicity and, unlike paclitaxel, is orally bioavailable and is not a substrate for the major drug efflux transporters, making it a promising and attractive alternative to taxane-based therapy.

2.
Anal Chem ; 95(50): 18426-18435, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38051938

RESUMO

Non-small cell lung cancer (NSCLC) accounts for a high proportion of lung cancer cases globally, but early detection remains challenging, and insufficient oxygen supply at tumor sites leads to suboptimal treatment outcomes. Therefore, the development of core-shell Au@Pt-Se nanoprobes (Au@Pt-Se NPs) with peptide chains linked through Pt-Se bonds was designed and synthesized for NSCLC biomarker protein calcium-activated neutral protease 2 (CAPN2) and photothermal therapy (PTT) enhancement. The NP can be specifically cleaved by CAPN2, resulting in fluorescence recovery to realize the detection. The Pt-Se bonds exhibit excellent resistance to biologically abundant thiols such as glutathione, thus avoiding "false-positive" results and enabling precise detection of NSCLC. Additionally, the platinum (Pt) shell possesses catalase-like properties that catalyze the generation of oxygen from endogenous hydrogen peroxide within the tumor, thereby reducing hypoxia-inducible factor-1α (HIF-1α) levels and alleviating the hypoxic environment at the tumor site. The Au@Pt-Se NPs exhibit strong absorption bands, enabling the possibility of PTT in the near-infrared II region (NIR II). This study presents an effective approach for the early detection of NSCLC while also serving as an oxygen supplier to alleviate the hypoxic environment and enhance NIR II PTT.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Nanopartículas , Neoplasias , Humanos , Terapia Fototérmica , Carcinoma Pulmonar de Células não Pequenas/terapia , Platina/química , Neoplasias Pulmonares/terapia , Neoplasias/patologia , Oxigênio , Linhagem Celular Tumoral , Nanopartículas/química
3.
Invest Ophthalmol Vis Sci ; 64(12): 25, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707836

RESUMO

Purpose: Glaucoma is a group of heterogeneous optic neuropathies characterized by the progressive degeneration of retinal ganglion cells. However, the underlying mechanisms have not been understood completely. We aimed to elucidate the genetic network associated with the development of pigmentary glaucoma with DBA/2J (D2) mouse model of glaucoma and corresponding genetic control D2-Gpnmb (D2G) mice carrying the wild type (WT) Gpnmb allele. Methods: Retinas isolated from 13 D2 and 12 D2G mice were subdivided into 2 age groups: pre-onset (1-6 months: samples were collected at approximately 1-2, 2-4, and 5-6 months) and post-onset (7-15 months: samples were collected at approximately 7-9, 10-12, and 13-15 months) glaucoma were compared. Differential gene expression (DEG) analysis and gene-set enrichment analyses were performed. To identify micro-RNAs (miRNAs) that target Gpnmb, miRNA expression levels were correlated with time point matched mRNA expression levels. A weighted gene co-expression network analysis (WGCNA) was performed using the reference BXD mouse population. Quantitative real-time PCR (qRT-PCR) was used to validate Gpnmb and miRNA expression levels. Results: A total of 314 and 86 DEGs were identified in the pre-onset and post-onset glaucoma groups, respectively. DEGs in the pre-onset glaucoma group were associated with the crystallin gene family, whereas those in the post-onset group were related to innate immune system response. Of 1329 miRNAs predicted to target Gpnmb, 3 miRNAs (miR-125a-3p, miR-3076-5p, and miR-214-5p) were selected. A total of 47 genes demonstrated overlapping with the identified DEGs between D2 and D2G, segregated into their time-relevant stages. Gpnmb was significantly downregulated, whereas 2 out of 3 miRNAs were significantly upregulated (P < 0.05) in D2 mice at both 3-and 10-month time points. Conclusions: These findings suggest distinct gene-sets involved in pre-and post-glaucoma in the D2 mouse. We identified three miRNAs regulating Gpnmb in the development of murine pigmentary glaucoma.


Assuntos
Glaucoma de Ângulo Aberto , Glaucoma , MicroRNAs , Animais , Camundongos , Camundongos Endogâmicos DBA , Redes Reguladoras de Genes , Glaucoma de Ângulo Aberto/genética , Glaucoma/genética , MicroRNAs/genética , Fatores de Transcrição
5.
J Transl Med ; 21(1): 151, 2023 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-36829176

RESUMO

BACKGROUND: Cancer-testis antigens (CTAs) are often expressed in tumor and testicular tissues but not in other normal tissues. To date, there has been no comprehensive study of the expression and clinical significance of CTA genes associated with endometrial cancer (EC) development. Additionally, the clinical relevance, biological role, and molecular mechanisms of the CTA gene TTK protein kinase (TTK) in EC are yet to be fully understood. METHODS: Using bioinformatics methods, we comprehensively investigated the genomic, transcriptomic, and epigenetic changes associated with aberrant TTK overexpression in EC samples from the TCGA database. We further investigated the mechanisms of the lower survival associated with TTK dysregulation using single-cell data of EC samples from the GEO database. Cell functional assays were used to confirm the biological roles of TTK in EC cells. RESULTS: We identified 80 CTA genes that were more abundant in EC than in normal tissues, and high expression of TTK was significantly linked with lower survival in EC patients. Furthermore, ROC analysis revealed that TTK could accurately distinguish stage I EC tissues from benign endometrial samples, suggesting that TTK has the potential to be a biomarker for early EC detection. We found TTK overexpression was more prevalent in EC patients with high-grade, advanced tumors, serous carcinoma, and TP53 alterations. Furthermore, in EC tissue, TTK expression showed a strong positive correlation with EMT-related genes. With single-cell transcriptome data, we identified a proliferative cell subpopulation with high expression of TTK and known epithelial-mesenchymal transition (EMT)-related genes and transcription factors. When proliferative cells were grouped according to TTK expression levels, the overexpressed genes in the TTKhigh group were shown to be functionally involved in the control of chemoresistance. Utilizing shRNA to repress TTK expression in EC cells resulted in substantial decreases in cell proliferation, invasion, EMT, and chemoresistance. Further research identified microRNA-21 (miR-21) as a key downstream regulator of TTK-induced EMT and chemoresistance. Finally, the TTK inhibitor AZ3146 was effective in reducing EC cell growth and invasion and enhancing the apoptosis of EC cells generated by paclitaxel. CONCLUSION: Our findings establish the clinical significance of TTK as a new biomarker for EC and an as-yet-unknown carcinogenic function. This present study proposes that the therapeutic targeting of TTK might provide a viable approach for the treatment of EC.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , MicroRNAs/genética , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Multiômica , Proteínas de Ciclo Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Neoplasias do Endométrio/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo
6.
Front Cell Dev Biol ; 10: 959518, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247016

RESUMO

Cryptotanshinone (CT), a natural compound derived from Salvia miltiorrhiza Bunge that is also known as the traditional Chinese medicine Danshen, exhibits antitumor activity in various cancers. However, it remains unclear whether CT has a potential therapeutic benefit against ovarian cancers. The aim of this study was to test the efficacy of CT in ovarian cancer cells in vitro and using a xenograft model in NSG mice orthotopically implanted with HEY A8 human ovarian cancer cells and to explore the molecular mechanism(s) underlying CT's antitumor effects. We found that CT inhibited the proliferation, migration, and invasion of OVCAR3 and HEY A8 cells, while sensitizing the cell responses to the chemotherapy drugs paclitaxel and cisplatin. CT also suppressed ovarian tumor growth and metastasis in immunocompromised mice orthotopically inoculated with HEY A8 cells. Mechanistically, CT degraded the protein encoded by the oncogene c-Myc by promoting its ubiquitination and disrupting the interaction with its partner protein Max. CT also attenuated signaling via the nuclear focal adhesion kinase (FAK) pathway and degraded FAK protein in both cell lines. Knockdown of c-Myc using lentiviral CRISPR/Cas9 nickase resulted in reduction of FAK expression, which phenocopies the effects of CT and the c-Myc/Max inhibitor 10058-F4. Taken together, our studies demonstrate that CT inhibits primary ovarian tumor growth and metastasis by degrading c-Myc and FAK and attenuating the FAK signaling pathway.

8.
Front Oncol ; 12: 912935, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35712514

RESUMO

Increased glycolysis in tumor cells is frequently associated with drug resistance. Overexpression of glucose transporter-1 (GLUT1) promotes the Warburg effect and mediates chemoresistance in various cancers. Aberrant GLUT1 expression is considered as an essential early step in the development of endometrial cancer (EC). However, its role in EC glycolysis and chemoresistance and the upstream mechanisms underlying GLUT1 overexpression, remain undefined. Here, we demonstrated that GLUT1 was highly expressed in EC tissues and cell lines and that high GLUT1 expression was associated with poor prognosis in EC patients. Both gain-of-function and loss-of-function studies showed that GLUT1 increased EC cell proliferation, invasion, and glycolysis, while also making them resistant to paclitaxel. The long non-coding RNA TMPO-AS1 was found to be overexpressed in EC tissues and to be negatively associated with EC patient outcomes. RNA-immunoprecipitation and luciferase reporter assays confirmed that TMPO-AS1 elevated GLUT1 expression by directly binding to two critical tumor suppressor microRNAs (miR-140 and miR-143). Downregulation of TMPO-AS1 remarkably reduced EC cell proliferation, invasion, glycolysis, and paclitaxel resistance in EC cells. This study established that dysregulation of the TMPO-AS1-miR-140/miR-143 axis contributes to glycolysis and drug resistance in EC cells by up-regulating GLUT1 expression. Thus, inhibiting TMPO-AS1 and GLUT1 may prove beneficial in overcoming glycolysis-induced paclitaxel resistance in patients with EC.

9.
Front Oncol ; 12: 851065, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35574330

RESUMO

Focal adhesion kinase (FAK) is highly expressed in a variety of human cancers and is a target for cancer therapy. Since FAK kinase inhibitors only block the kinase activity of FAK, they are not highly effective in clinical trials. FAK also functions as a scaffold protein in a kinase-independent pathway. To effectively target FAK, it is required to block both FAK kinase-dependent and FAK-independent pathways. Thus, we tested a new generation drug FAK PROTAC for ovarian cancer therapy, which blocks both kinase and scaffold activity. We tested the efficacy of FAK PROTAC and its parent kinase inhibitor (VS-6063) in ovarian cancer cell lines in vitro by performing cell functional assays including cell proliferation, migration, invasion. We also tested in vivo activity in orthotopic ovarian cancer mouse models. In addition, we assessed whether FAK PROTAC disrupts kinase-dependent and kinase-independent pathways. We demonstrated that FAK PROTAC is highly effective as compared to its parent FAK kinase inhibitor VS-6063 in inhibiting cell proliferation, survival, migration, and invasion. FAK PROTAC not only inhibits the FAK kinase activity but also FAK scaffold function by disrupting the interaction between FAK and its interaction protein ASAP1. We further showed that FAK PROTAC effectively inhibits ovarian tumor growth and metastasis. Taken together, FAK PROTAC inhibits both FAK kinase activity and its scaffold protein activity by disrupting the interaction between FAK and ASAP1 and is highly effective in inhibiting ovarian tumor growth and metastasis.

10.
Cancers (Basel) ; 14(6)2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35326737

RESUMO

Although metastases are the principal cause of cancer-related deaths, the molecular aspects of the role of stromal cells in the establishment of the metastatic niche remain poorly understood. One of the most prevalent sites for cancer metastasis is the lungs. According to recent research, lung stromal cells such as bronchial epithelial cells and resident macrophages secrete autotaxin (ATX), an enzyme with lysophospholipase D activity that promotes cancer progression. In fact, several studies have shown that many cell types in the lung stroma could provide a rich source of ATX in diseases. In the present study, we sought to determine whether ATX derived from alveolar type II epithelial (ATII) pneumocytes could modulate the progression of lung metastasis, which has not been evaluated previously. To accomplish this, we used the B16-F10 syngeneic melanoma model, which readily metastasizes to the lungs when injected intravenously. Because B16-F10 cells express high levels of ATX, we used the CRISPR-Cas9 technology to knock out the ATX gene in B16-F10 cells, eliminating the contribution of tumor-derived ATX in lung metastasis. Next, we used the inducible Cre/loxP system (Sftpc-CreERT2/Enpp2fl/fl) to generate conditional knockout (KO) mice in which ATX is specifically deleted in ATII cells (i.e., Sftpc-KO). Injection of ATX-KO B16-F10 cells into Sftpc-KO or Sftpc-WT control littermates allowed us to investigate the specific contribution of ATII-derived ATX in lung metastasis. We found that targeted KO of ATX in ATII cells significantly reduced the metastatic burden of ATX-KO B16-F10 cells by 30% (unpaired t-test, p = 0.028) compared to Sftpc-WT control mice, suggesting that ATX derived from ATII cells could affect the metastatic progression. We detected upregulated levels of cytokines such as IFNγ (unpaired t-test, p < 0.0001) and TNFα (unpaired t-test, p = 0.0003), which could favor the increase in infiltrating CD8+ T cells observed in the tumor regions of Sftpc-KO mice. Taken together, our results highlight the contribution of host ATII cells as a stromal source of ATX in the progression of melanoma lung metastasis.

11.
Biochem Biophys Rep ; 28: 101108, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34466666

RESUMO

The majority of cervical cancer (CC) patients are caused by the high-risk human papillomavirus (HPV) infection Although they are preventable and controllable, the mortality rate is still high. It is essential to identify the biomarkers for early screening and diagnosis of CC to improve the prognosis of patients with CC. The conjugating enzyme 2 (E2) family members are the key components of ubiquitin protease system. However, the role of E2 family in CC remains unclear. We aimed to investigate the role of UBE2V1, a ubiquitin binding E2 enzyme variant protein (ube2v) without conserved cysteine residues required for E2s catalytic activity in CC. In this study, we first studied the expression of UBE2V1 in CC by real time quantitative PCR (RT-qPCR), and then, the clinical information of 191 CC patients in TCGA database was retrieved to explore the relationship between the expression of UBE2V1 and the occurrence and development of CC by examining the translational profile and methylation, the high expression of UBE2V1 was well correlated to the poor prognosis of patients, indicating that UBE2V1 is an independent risk factor for the prognosis of CC patients. The expression of UBE2V1 was also correlated with clinical stages, tumor grades and TNM stages of CC. In addition, the expression of UBE2V1 was slightly negatively correlated with the methylation at the multiple methylation sites. our study revealed the relationship between UBE2V1 and the occurrence and development of CC from the level of transcriptional profile and DNA methylation. UBE2V1 is a novel candidate biomarker for the diagnosis, screening and prognosis of CC.

12.
J Cancer ; 12(18): 5654-5663, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34405025

RESUMO

Epithelial to mesenchymal transition (EMT) is known to contribute to tumor metastasis and chemoresistance. Reversing EMT using small molecule inhibitors to target EMT associated gene expression represents an effective strategy for cancer treatment. The purpose of this study is to test whether a new luminacin D analog HL142 reverses EMT in ovarian cancer (OC) and has the therapeutic potential for OC. We chemically synthesized HL142 and tested its functions in OC cells in vitro and its efficacy in inhibiting ovarian tumor growth and metastasis in vivo using orthotopic OC mouse models. We first demonstrate that ASAP1 is co-amplified and interacts with the focal adhesion kinase (FAK) protein in serous ovarian carcinoma. HL142 inhibits ASAP1 and its interaction protein FAK in highly invasive OVCAR8 and moderately invasive OVCAR3 cells. HL142 inhibits EMT phenotypic switch, accompanied by upregulating epithelial marker E-cadherin and cytokeratin-7 and downregulating mesenchymal markers vimentin, ß-catenin, and snail2 in both cell lines. Functionally, HL142 inhibits proliferation, colony formation, migration, and invasion. HL142 also sensitizes cell responses to chemotherapy drug paclitaxel treatment and inhibits ovarian tumor growth and metastasis in orthotopic OC mouse models. We further show that HL142 attenuates the TGFß and FAK pathways in vitro using OC cells and in vivo using orthotopic mouse models.

13.
Eur J Med Chem ; 224: 113719, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34371464

RESUMO

The survivin (BIRC5) expression is very low in normal differentiated adult tissues, but it is one of the most widely upregulated genes in tumor cells. The overexpression of survivin in many cancer types has been positively correlated with resistance to chemotherapy, tumor metastasis, and poor patient survival. Survivin is considered to be a cancer specific biomarker and serves as a potential cancer drug target. In this report, we describe the design and syntheses of a series of novel selective survivin inhibitors based on the hydroxyquinoline scaffold from our previously reported lead compound MX-106. The best compound identified in this study is compound 12b. In vitro, 12b inhibited cancer cell proliferation with an average IC50 value of 1.4 µM, using a panel of melanoma, breast, and ovarian cancer cell lines. The metabolic stability of 12b improved over MX-106 by 1.7-fold (88 vs 51 min in human microsomes). Western blot analyses demonstrated that treatments with 12b selectively decreased survivin protein levels, but negligibly affected other closely related members in the IAP family proteins, and strongly induced cancer cell apoptosis. In vivo, compound 12b effectively inhibited melanoma tumor growth when tested using a human A375 melanoma xenograft model. Further evaluation using an aggressive, orthotopic ovarian cancer mouse model showed that 12b was highly efficacious in suppressing both primary tumor growth in ovaries and tumor metastasis to multiple peritoneal organs. Collectively, results in this study strongly suggest that the hydroxyquinoline scaffold, represented by 12b and our earlier lead compound MX-106, has abilities to selectively target survivin and is promising for further preclinical development.


Assuntos
Hidroxiquinolinas/química , Survivina/antagonistas & inibidores , Animais , Proliferação de Células , Humanos , Camundongos , Modelos Moleculares , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Exp Biol Med (Maywood) ; 246(16): 1810-1815, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34229470

RESUMO

Ovarian cancer is the deadliest gynecological malignancy due to its symptomless early stage, metastasis, and high recurrence rate. The tumor microenvironment contributes to the ovarian cancer progression, metastasis, and chemoresistance. Adipose-derived stem cell in the tumor microenvironment of ovarian cancer, as a key player, interacts with ovarian cancer cells to form the cancer-associated fibroblasts and cancer-associated adipocytes, and secretes soluble factors to activate tumor cell signaling, which can promote ovarian cancer metastasis and chemoresistance. We summarize in this review the recent progress in the studies of interactions between adipose-derived stem cell and ovarian cancer, thus, to provide some insight for ovarian cancer therapy through targeting adipose-derived stem cell.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Metástase Neoplásica/patologia , Células-Tronco Neoplásicas/patologia , Neoplasias Ovarianas/patologia , Tecido Adiposo/patologia , Feminino , Humanos , Microambiente Tumoral/fisiologia
15.
J Exp Clin Cancer Res ; 40(1): 216, 2021 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-34174908

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) and aerobic glycolysis are fundamental processes implicated in cancer metastasis. Although increasing evidence demonstrates an association between EMT induction and enhanced aerobic glycolysis in human cancer, the mechanisms linking these two conditions in endometrial cancer (EC) cells remain poorly defined. METHODS: We characterized the role and molecular mechanism of the glycolytic enzyme hexokinase 2 (HK2) in mediating EMT and glycolysis and investigated how long noncoding RNA DLEU2 contributes to the stimulation of EMT and glycolysis via upregulation of HK2 expression. RESULTS: HK2 was highly expressed in EC tissues, and its expression was associated with poor overall survival. Overexpression of HK2 effectively promoted EMT phenotypes and enhanced aerobic glycolysis in EC cells via activating FAK and its downstream ERK1/2 signaling. Moreover, microRNA-455 (miR-455) served as a tumor suppressor by directly interacting with HK2 mRNA and inhibiting its expression. Furthermore, DLEU2 displayed a significantly higher expression in EC tissues, and increased DLEU2 expression was correlated with worse overall survival. DLEU2 acted as an upstream activator for HK2-induced EMT and glycolysis in EC cells through two distinct mechanisms: (i) DLEU2 induced HK2 expression by competitively binding with miR-455, and (ii) DLEU2 also interacted with EZH2 to silence a direct inhibitor of HK2, miR-181a. CONCLUSIONS: This study identified DLEU2 as an upstream activator of HK2-driven EMT and glycolysis in EC cells and provided significant mechanistic insights for the potential treatment of EC.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/genética , Hexoquinase/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Neoplasias do Endométrio/genética , Transição Epitelial-Mesenquimal , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Glicólise , Humanos , Prognóstico , Transdução de Sinais , Análise de Sobrevida , Regulação para Cima
17.
Cell Biosci ; 11(1): 70, 2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827661

RESUMO

BACKGROUND: Epithelial to mesenchymal transition (EMT) contributes to tumor metastasis and chemoresistance. Eukaryotic initiation factor 5A2 (EIF5A2) is highly expressed in a variety of human cancers but rarely expressed in normal tissues. While EIF5A2 has oncogenic activity in several cancers and contributes to tumor metastasis, its role in ovarian cancer is unknown. In this study, we investigate whether EIF5A2 contributes to ovarian tumor metastasis by promoting EMT. METHODS: To investigate the role of EIF5A2, we knocked out (KO) EIF5A2 using lentiviral CRISPR/Cas9 nickase in high invasive SKOV3 and OVCAR8 cells and overexpressed EIF5A2 in low invasive OVCAR3 cells using lentiviral vector. Cell proliferation, migration and invasion was examined in vitro ovarian cancer cells and tumor metastasis was evaluated in vivo using orthotopic ovarian cancer mouse models. RESULTS: Here we report that EIF5A2 is highly expressed in ovarian cancers and associated with patient poor survival. Lentiviral CRISPR/Cas9 nickase vector mediated knockout (KO) of EIF5A2 inhibits epithelial to mesenchymal transition (EMT) in SKOV3 and OVCAR8 ovarian cancer cells that express high levels of EIF5A2. In contrast, overexpression of EIF5A2 promotes EMT in OVCAR3 epithelial adenocarcinoma cells that express relatively low EIF5A2 levels. KO of EIF5A2 in SKOV3 and OVCAR8 cells inhibits ovarian cancer cell migration and invasion, while its overexpression promotes cell migration and invasion in OVCAR3 adenocarcinoma cells. We further demonstrate that EIF5A2 promotes EMT by activating the TGFß pathway and KO of EIF5A2 inhibits ovarian tumor growth and metastasis in orthotopic ovarian cancer mouse models. CONCLUSION: Our results indicate that EIF5A2 is an important controller of ovarian tumor growth and metastasis by promoting EMT and activating the TGFß pathway.

18.
Front Cell Dev Biol ; 9: 656993, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718392

RESUMO

P-element-induced wimpy testis (PIWI)-interacting RNAs (piRNAs) are a class of small non-coding RNA molecules that are 24-31 nucleotides in length. PiRNAs are thought to bind to PIWI proteins (PIWL1-4, a subfamily of Argonaute proteins), forming piRNA/PIWI complexes that influence gene expression at the transcriptional or post-transcriptional levels. However, it has been recently reported that the interaction of PIWI proteins with piRNAs does not encompass the entire function of PIWI proteins in human tumor cells. PIWIL1 (also called HIWI) is specifically expressed in the testis but not in other normal tissues. In tumor tissues, PIWIL1 is frequently overexpressed in tumor tissues compared with normal tissues. Its high expression is closely correlated with adverse clinicopathological features and shorter patient survival. Upregulation of PIWIL1 drastically induces tumor cell proliferation, epithelial-mesenchymal transition (EMT), invasion, cancer stem-like properties, tumorigenesis, metastasis and chemoresistance, probably via piRNA-independent mechanisms. In this article, we summarize the current existing literature on PIWIL1 in human tumors, including its expression, biological functions and regulatory mechanisms, providing new insights into how the dysregulation of PIWIL1 contributes to tumor initiation, development and chemoresistance through diverse signaling pathways. We also discuss the most recent findings on the potential clinical applications of PIWIL1 in cancer diagnosis and treatment.

20.
Front Oncol ; 11: 756011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35004276

RESUMO

Adipose-derived stem cells (ADSC) are multipotent mesenchymal stem cells derived from adipose tissues and are capable of differentiating into multiple cell types in the tumor microenvironment (TME). The roles of ADSC in ovarian cancer (OC) metastasis are still not well defined. To understand whether ADSC contributes to ovarian tumor metastasis, we examined epithelial to mesenchymal transition (EMT) markers in OC cells following the treatment of the ADSC-conditioned medium (ADSC-CM). ADSC-CM promotes EMT in OC cells. Functionally, ADSC-CM promotes OC cell proliferation, survival, migration, and invasion. We further demonstrated that ADSC-CM induced EMT via TGF-ß growth factor secretion from ADSC and the ensuing activation of the TGF-ß pathway. ADSC-CM-induced EMT in OC cells was reversible by the TGF-ß inhibitor SB431542 treatment. Using an orthotopic OC mouse model, we also provide the experimental evidence that ADSC contributes to ovarian tumor growth and metastasis by promoting EMT through activating the TGF-ß pathway. Taken together, our data indicate that targeting ADSC using the TGF-ß inhibitor has the therapeutic potential in blocking the EMT and OC metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA