Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Anal Sci ; 36(4): 431-434, 2020 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-31761812

RESUMO

Although an accurate detection of trace oil leaks is of the utmost important for soil protection, the typically used techniques fail to provide rapid assessment of less than 20 parts per million (ppm) of oil in soil. Terahertz (THz) time-domain spectroscopy, an optical method with high sensitivity to polar organics, was used to characterize the content of crude oil in soils. A linear model was built between the concentration of crude oil and the THz attenuation coefficient, which predicted the limit of detection ranging from 4.11 to 16.2 ppm. Some organics, such as aromatic and aliphatic compounds, contribute to larger absorption in the THz range than minerals. Effective-medium theory was optimized to elucidate the crude oil content dependence of THz dielectric constants. Consequently, THz technology could be an effective method for detecting trace oil leakage in soil.

2.
ACS Omega ; 4(1): 1810-1815, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459435

RESUMO

This work aims to investigate the electromagnetically induced transparency-like (EIT-like) metamaterial for high water cut emulsions' detection in the terahertz band. The electromagnetic responses of the selected metamaterial covering emulsions exhibit red-shifted resonant frequency with increasing water volume from 60 to 98%. Three numerical models coinciding with theory analysis were built based on the extracted resonant frequencies at the transmission peak and dips to predict water concentration. The results show that the built models accurately predicted the water content with absolute errors less than 0.26, 0.41, and 0.24%, respectively. The EIT-like resonance is introduced by coupled bright and dark modes, making it similar to a weakened plasma resonance. Consequently, the permittivity-dependent frequency would help develop both economically feasible and socially beneficial sensors for high water content prediction.

3.
Materials (Basel) ; 12(5)2019 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-30857195

RESUMO

Nickel oxide (NiO) nanotubes were synthesized via a thermal oxidation process from Ni nanowires. The effects of oxidation temperature on the morphology, microstructures, and composition of nanowires were investigated using scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results show that the Ni nanowires convert initially to Ni/NiO core-shell nanowires with increasing annealing temperatures, and then to the nanotubes at the critical transition temperature of about 425 °C. Our findings provide useful information for the preparation of NiO nanotubes to meet the required applications.

4.
Appl Spectrosc ; 72(7): 1040-1046, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29714077

RESUMO

The origin of the water spin isomers observed under various physico-chemical conditions is of great interest, including that of H2O molecules in the gas phase. Here, terahertz time-domain spectroscopy (THz-TDS) was used to study the humidity-dependent ortho-to- para (O/P) ratio of water vapor at room temperature. The relative contents of para and ortho molecules were obtained by fitting the absorption lines of water vapor showing the relationship between the spin isomer contents and humidity. Larger O/P ratios with values of ∼3.2 were observed at lower humidity (<20%) due to the stronger attractive forces of para molecules. The concentration of the ortho isomers then began to decrease at higher humidity (>20%) due to the preferential formation of dimers and clusters at increasing concentrations. Thus, the ratio gradually decreased with increasing humidity.

5.
Sci Rep ; 6: 27488, 2016 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-27271330

RESUMO

The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA