Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 216(Pt 4): 114777, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36370818

RESUMO

Facile fabrication of porous carbon materials from waste halogenated plastic is highly attractive but frequently hampered due to potential release of halogenated organic pollutants. In this study, a novel type of carbon hybrid was tentatively synthesized from a real-world halogenated plastic as an inexpensive carbon source by sub/supercritical carbon dioxide carbonization technique. It was found that halogen-free carbon carrier was advantageously synthesized through carbonization of halogenated plastic without using catalysts due to zip depolymerization, random chain cracking and free radical reactions induced by sub/supercritical carbon dioxide technique. Exhibiting with more abundant functional groups including C-O, CO groups than pyrolytic carbon carrier, the derived carbon carrier demonstrated excellent performance in selective recovery of lithium from cathode powder with highest recovery efficiency of 93.6%. Mechanism study indicated that cathode powder was transformed into low-valence states of transition metals/metal oxides and released lithium as lithium carbonate due to collapse of oxygen framework via carbothermic reduction. This work provides an applicable and green process for synthesis of alternative carbon carrier from waste halogenated plastic and its application as carbothermic reductant in lithium recovery.


Assuntos
Dióxido de Carbono , Lítio , Fontes de Energia Elétrica , Reciclagem , Plásticos , Pós
2.
J Hazard Mater ; 432: 128746, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35339831

RESUMO

Upcycling of waste plastics as functional materials is a new approach for synthesizing low-cost and durable adsorbents with zwitterionic property. Herein, a facile process for recycling blending waste plastics to fabricate zwitterionic plastic-g-hydrogel (ZPH) for simultaneous adsorbing cationic and anionic heavy metals was developed. ZPH possessed high affinities for cations and anions in both acid and alkaline conditions owing to its zwitterionic property, and the maximum adsorption capacities of Pb2+, Cd2+, Ba2+, and Cr(VI) (Cr2O72-) were 132.13, 85.58, 69.92 and 85.15 mg/g, respectively. Mechanism study indicated the incompatibility of blending plastics was skillfully overcome through the crosslinking between sodium alginate (SA)/chitosan (CTS) and plastics. Cations were adsorbed onto ZPH via electrostatic interaction, cation exchange and coordination interactions with Cl/N/O-containing groups. Furthermore, the reduction of Cr(VI) to Cr(III) was another important path for ZPH to capture anionic Cr2O72-, and subsequently Cr(III) was adsorbed via coordination interaction and cation exchange. Moreover, the regeneration experiment showed ZPH possessed excellent reusability and stable structure. Accordingly, this research provides a profitable approach for recycling blending plastics, and ZPH has potentials for industrial application in wastewater treatment or contaminated site remediation with complex heavy metals pollution.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Ânions , Cátions/química , Hidrogéis/química , Metais Pesados/química , Plásticos , Poluentes Químicos da Água/química
3.
PLoS One ; 15(5): e0232051, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32433697

RESUMO

Dalbergia odorifera T. Chen seedlings do not grow well in the typical red soils of tropical regions. Eighteen culture substances filled with different substrate combinations and proportions of red soil, coconut coir powder, deciduous leaf powder, and sand were used as to determine their effects on the growth, root system development, dry matter accumulation and allocation, leaf relative electrolyte leakage, chlorophyll content, root superoxide dismutase activity, root malondialdehyde content, and total soluble sugar content of D. odorifera. Results demonstrated that different substrate combinations and proportions had different effects on the performance of D. odorifera. All mixed substrates were better than any single substrate. The suitable substrate combinations and proportions of sand, coconut coir powder, and deciduous leaf powder mixed with red soil improved the growth, root architecture, and physiological characteristics of D. odorifera seedling. For example, groups C1-2 (coconut coir/red soil = 2/2, v/v, the same below) and C3-2 (red soil/sand = 2/2) exerted the best effects on plant growth and biomass accumulation. Groups C1-2, C2-2 (deciduous leaf powder/red soil = 2/2), and C3-2 remarkably enhanced root system development. Group C6 (coconut coir/red soil/sand = 1/1/1) substantially promoted root nodule development. Group C3-1 (red soil/sand = 3/1) exhibited the best effects on physiological characteristics. On the basis of the comprehensive evaluation of Euclid's multidimensional space mathematical model, we found that the suitable substrate combinations followed the order of C1-2 > C3-1 > C2-2. This research provides scientific guidance for the proper seedling culture of D. odorifera and the rational utilization of solid wastes such as coconut coir and deciduous leaves of Ficus elastica.


Assuntos
Dalbergia/fisiologia , Solo/química , Biomassa , Clorofila/análise , Dalbergia/anatomia & histologia , Dalbergia/crescimento & desenvolvimento , Eletrólitos/metabolismo , Fertilizantes/análise , Malondialdeído/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/enzimologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plântula/anatomia & histologia , Plântula/crescimento & desenvolvimento , Plântula/fisiologia , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA