Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Ann Appl Stat ; 18(1): 328-349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38435672

RESUMO

We propose a novel analysis of power (ANOPOW) model for analyzing replicated nonstationary time series commonly encountered in experimental studies. Based on a locally stationary ANOPOW Cramér spectral representation, the proposed model can be used to compare the second-order time-varying frequency patterns among different groups of time series and to estimate group effects as functions of both time and frequency. Formulated in a Bayesian framework, independent two-dimensional second-order random walk (RW2D) priors are assumed on each of the time-varying functional effects for flexible and adaptive smoothing. A piecewise stationary approximation of the nonstationary time series is used to obtain localized estimates of time-varying spectra. Posterior distributions of the time-varying functional group effects are then obtained via integrated nested Laplace approximations (INLA) at a low computational cost. The large-sample distribution of local periodograms can be appropriately utilized to improve estimation accuracy since INLA allows modeling of data with various types of distributions. The usefulness of the proposed model is illustrated through two real data applications: analyses of seismic signals and pupil diameter time series in children with attention deficit hyperactivity disorder. Simulation studies, Supplementary Materials (Li, Yue and Bruce, 2023a), and R code (Li, Yue and Bruce, 2023b) for this article are also available.

2.
J Comput Graph Stat ; 32(2): 413-433, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37377728

RESUMO

Independent component analysis is commonly applied to functional magnetic resonance imaging (fMRI) data to extract independent components (ICs) representing functional brain networks. While ICA produces reliable group-level estimates, single-subject ICA often produces noisy results. Template ICA is a hierarchical ICA model using empirical population priors to produce more reliable subject-level estimates. However, this and other hierarchical ICA models assume unrealistically that subject effects are spatially independent. Here, we propose spatial template ICA (stICA), which incorporates spatial priors into the template ICA framework for greater estimation efficiency. Additionally, the joint posterior distribution can be used to identify brain regions engaged in each network using an excursions set approach. By leveraging spatial dependencies and avoiding massive multiple comparisons, stICA has high power to detect true effects. We derive an efficient expectation-maximization algorithm to obtain maximum likelihood estimates of the model parameters and posterior moments of the latent fields. Based on analysis of simulated data and fMRI data from the Human Connectome Project, we find that stICA produces estimates that are more accurate and reliable than benchmark approaches, and identifies larger and more reliable areas of engagement. The algorithm is computationally tractable, achieving convergence within 12 hours for whole-cortex fMRI analysis.

3.
Neuroimage ; 249: 118908, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35032660

RESUMO

The general linear model (GLM) is a widely popular and convenient tool for estimating the functional brain response and identifying areas of significant activation during a task or stimulus. However, the classical GLM is based on a massive univariate approach that does not explicitly leverage the similarity of activation patterns among neighboring brain locations. As a result, it tends to produce noisy estimates and be underpowered to detect significant activations, particularly in individual subjects and small groups. A recently proposed alternative, a cortical surface-based spatial Bayesian GLM, leverages spatial dependencies among neighboring cortical vertices to produce more accurate estimates and areas of functional activation. The spatial Bayesian GLM can be applied to individual and group-level analysis. In this study, we assess the reliability and power of individual and group-average measures of task activation produced via the surface-based spatial Bayesian GLM. We analyze motor task data from 45 subjects in the Human Connectome Project (HCP) and HCP Retest datasets. We also extend the model to multi-run analysis and employ subject-specific cortical surfaces rather than surfaces inflated to a sphere for more accurate distance-based modeling. Results show that the surface-based spatial Bayesian GLM produces highly reliable activations in individual subjects and is powerful enough to detect trait-like functional topologies. Additionally, spatial Bayesian modeling enhances reliability of group-level analysis even in moderately sized samples (n=45). Notably, the power of the spatial Bayesian GLM to detect activations above a scientifically meaningful effect size is nearly invariant to sample size, exhibiting high power even in small samples (n=10). The spatial Bayesian GLM is computationally efficient in individuals and groups and is convenient to implement with the open-source BayesfMRI R package.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Conectoma/normas , Imageamento por Ressonância Magnética/normas , Modelos Teóricos , Análise e Desempenho de Tarefas , Adulto , Teorema de Bayes , Conectoma/métodos , Humanos , Modelos Lineares , Imageamento por Ressonância Magnética/métodos , Reprodutibilidade dos Testes
4.
J Am Stat Assoc ; 115(530): 501-520, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33060871

RESUMO

Cortical surface fMRI (cs-fMRI) has recently grown in popularity versus traditional volumetric fMRI. In addition to offering better whole-brain visualization, dimension reduction, removal of extraneous tissue types, and improved alignment of cortical areas across subjects, it is also more compatible with common assumptions of Bayesian spatial models. However, as no spatial Bayesian model has been proposed for cs-fMRI data, most analyses continue to employ the classical general linear model (GLM), a "massive univariate" approach. Here, we propose a spatial Bayesian GLM for cs-fMRI, which employs a class of sophisticated spatial processes to model latent activation fields. We make several advances compared with existing spatial Bayesian models for volumetric fMRI. First, we use integrated nested Laplacian approximations (INLA), a highly accurate and efficient Bayesian computation technique, rather than variational Bayes (VB). To identify regions of activation, we utilize an excursions set method based on the joint posterior distribution of the latent fields, rather than the marginal distribution at each location. Finally, we propose the first multi-subject spatial Bayesian modeling approach, which addresses a major gap in the existing literature. The methods are very computationally advantageous and are validated through simulation studies and two task fMRI studies from the Human Connectome Project.

5.
Stat Med ; 35(10): 1689-705, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-26643287

RESUMO

This paper is motivated from a retrospective study of the impact of vitamin D deficiency on the clinical outcomes for critically ill patients in multi-center critical care units. The primary predictors of interest, vitamin D2 and D3 levels, are censored at a known detection limit. Within the context of generalized linear mixed models, we investigate statistical methods to handle multiple censored predictors in the presence of auxiliary variables. A Bayesian joint modeling approach is proposed to fit the complex heterogeneous multi-center data, in which the data information is fully used to estimate parameters of interest. Efficient Monte Carlo Markov chain algorithms are specifically developed depending on the nature of the response. Simulation studies demonstrate the outperformance of the proposed Bayesian approach over other existing methods. An application to the data set from the vitamin D deficiency study is presented. Possible extensions of the method regarding the absence of auxiliary variables, semiparametric models, as well as the type of censoring are also discussed.


Assuntos
Teorema de Bayes , Modelos Lineares , Deficiência de Vitamina D/epidemiologia , Algoritmos , Simulação por Computador , Estado Terminal , Feminino , Mortalidade Hospitalar , Humanos , Tempo de Internação/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Método de Monte Carlo , Estudos Multicêntricos como Assunto , Ohio , Estudos Retrospectivos
6.
Biometrics ; 67(3): 937-46, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21175553

RESUMO

In this work we propose a fully Bayesian semiparametric method to estimate the intensity of an inhomogeneous spatial point process. The basic idea is to first convert intensity estimation into a Poisson regression setting via binning data points on a regular grid, and then model the log intensity semiparametrically using an adaptive version of Gaussian Markov random fields to smooth the corresponding counts. The inference is carried by an efficient Markov chain Monte Carlo simulation algorithm. Compared to existing methods for intensity estimation, for example, parametric modeling and kernel smoothing, the proposed estimator not only provides inference regarding the dependence of the intensity function on possible covariates, but also uses information from the data to adaptively determine the amount of smoothing at the local level. The effectiveness of using our method is demonstrated through simulation studies and an application to a rainforest dataset.


Assuntos
Teorema de Bayes , Análise de Regressão , Algoritmos , Simulação por Computador , Cadeias de Markov , Modelos Estatísticos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA