Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(8): e1011554, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37556494

RESUMO

Plasticity of influenza virus hemagglutinin (HA) conformation increases an opportunity to generate conserved non-native epitopes with unknown functionality. Here, we have performed an in-depth analysis of human monoclonal antibodies against a stem-helix region that is occluded in native prefusion yet exposed in postfusion HA. A stem-helix antibody, LAH31, provided IgG Fc-dependent cross-group protection by targeting a stem-helix kinked loop epitope, with a unique structure emerging in the postfusion state. The structural analysis and molecular modeling revealed key contact sites responsible for the epitope specificity and cross-group breadth that relies on somatically mutated light chain. LAH31 was inaccessible to the native prefusion HA expressed on cell surface; however, it bound to the HA structure present on infected cells with functional linkage to the Fc-mediated clearance. Our study uncovers a novel non-native epitope that emerges in the postfusion HA state, highlighting the utility of this epitope for a broadly protective antigen design.


Assuntos
Anticorpos Antivirais , Influenza Humana , Orthomyxoviridae , Humanos , Anticorpos Neutralizantes , Anticorpos Antivirais/química , Anticorpos Antivirais/metabolismo , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
2.
Nat Commun ; 14(1): 4198, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37452031

RESUMO

SARS-CoV-2 Omicron subvariants have evolved to evade receptor-binding site (RBS) antibodies that exist in diverse individuals as public antibody clones. We rationally selected RBS antibodies resilient to mutations in emerging Omicron subvariants. Y489 was identified as a site of virus vulnerability and a common footprint of broadly neutralizing antibodies against the subvariants. Multiple Y489-binding antibodies were encoded by public clonotypes and additionally recognized F486, potentially accounting for the emergence of Omicron subvariants harboring the F486V mutation. However, a subclass of antibodies broadly neutralized BA.4/BA.5 variants via hydrophobic binding sites of rare clonotypes along with high mutation-resilience under escape mutation screening. A computationally designed antibody based on one of the Y489-binding antibodies, NIV-10/FD03, was able to bind XBB with any 486 mutation and neutralized XBB.1.5. The structural basis for the mutation-resilience of this Y489-binding antibody group may provide important insights into the design of therapeutics resistant to viral escape.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Antivirais , Sítios de Ligação , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Glicoproteína da Espícula de Coronavírus/genética
3.
Viruses ; 13(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34835117

RESUMO

Rabies has almost a 100% case-fatality rate and kills more than 59,000 people annually around the world. There is no established treatment for rabies. The rabies virus (RABV) expresses only the glycoprotein (RABVG) at the viral surface, and it is the target for the neutralizing antibodies. We previously established mouse monoclonal antibodies, 15-13 and 12-22, which showed neutralizing activity against the RABV, targeting the sequential and conformational epitopes on the RABVG, respectively. However, the molecular basis for the neutralizing activity of these antibodies is not yet fully understood. In this study, we evaluated the binding characteristics of the Fab fragments of the 15-13 and 12-22 antibodies. The recombinant RABVG protein, in prefusion form for the binding analysis, was prepared by the silkworm-baculovirus expression system. Biolayer interferometry (BLI) analysis indicated that the 15-13 Fab interacts with the RABVG, with a KD value at the nM level, and that the 12-22 Fab has a weaker binding affinity (KD ~ µM) with the RABVG compared to the 15-13 Fab. Furthermore, we determined the amino acid sequences of both the antibodies and the designed single-chain Fv fragments (scFvs) of the 15-13 and 12-22 antibodies as another potential biopharmaceutical for targeting rabies. The 15-13 and 12-22 scFvs were successfully prepared by the refolding method and were shown to interact with the RABVG at the nM level and the µM level of the KD, respectively. These binding characteristics were similar to that of each Fab. On the other hand, differential scanning fluorometry (DSF) revealed that the thermal stability of these scFvs decreases compared to their Fabs. While the improvement of the stability of scFvs will still be required, these results provide insights into the neutralizing activity and the potential therapeutic use of antibody fragments for RABV infection.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , Fragmentos Fab das Imunoglobulinas/imunologia , Vírus da Raiva/imunologia , Raiva/virologia , Proteínas Virais/imunologia , Animais , Células Cultivadas , Humanos , Camundongos , Proteínas Recombinantes/imunologia
4.
Immunity ; 54(10): 2385-2398.e10, 2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34508662

RESUMO

Potent neutralizing SARS-CoV-2 antibodies often target the spike protein receptor-binding site (RBS), but the variability of RBS epitopes hampers broad neutralization of multiple sarbecoviruses and drifted viruses. Here, using humanized mice, we identified an RBS antibody with a germline VH gene that potently neutralized SARS-related coronaviruses, including SARS-CoV and SARS-CoV-2 variants. X-ray crystallography revealed coordinated recognition by the heavy chain of non-RBS conserved sites and the light chain of RBS with a binding angle mimicking the angiotensin-converting enzyme 2 (ACE2) receptor. The minimum footprints in the hypervariable region of RBS contributed to the breadth of neutralization, which was enhanced by immunoglobulin G3 (IgG3) class switching. The coordinated binding resulted in broad neutralization of SARS-CoV and emerging SARS-CoV-2 variants of concern. Low-dose therapeutic antibody treatment in hamsters reduced the virus titers and morbidity during SARS-CoV-2 challenge. The structural basis for broad neutralizing activity may inform the design of a broad spectrum of therapeutics and vaccines.


Assuntos
Anticorpos Amplamente Neutralizantes/imunologia , Reações Cruzadas/imunologia , SARS-CoV-2/imunologia , Animais , Betacoronavirus/imunologia , Sítios de Ligação de Anticorpos , Anticorpos Amplamente Neutralizantes/química , Anticorpos Amplamente Neutralizantes/uso terapêutico , COVID-19/prevenção & controle , COVID-19/terapia , COVID-19/virologia , Cricetinae , Humanos , Switching de Imunoglobulina , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/imunologia , Camundongos , Domínios Proteicos , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/imunologia , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
J Biol Chem ; 295(28): 9531-9541, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32424043

RESUMO

Human leukocyte immunoglobulin-like receptors (LILRs) typically regulate immune activation by binding to the human leukocyte antigen class I molecules. LILRA2, a member of the LILR family, was recently reported to bind to other unique ligands, the bacterially degraded Igs (N-truncated Igs), for the activation of immune cells. Therefore, LILRA2 is currently attracting significant attention as a novel innate immune receptor. However, the detailed recognition mechanisms required for this interaction remain unclear. In this study, using several biophysical techniques, we uncovered the molecular mechanism of N-truncated Ig recognition by LILRA2. Surface plasmon resonance analysis disclosed that LILRA2 specifically binds to N-truncated Ig with weak affinity (Kd = 4.8 µm) and fast kinetics. However, immobilized LILRA2 exhibited a significantly enhanced interaction with N-truncated Ig due to avidity effects. This suggests that cell surface-bound LILRA2 rapidly monitors and identifies bi- or multivalent abnormal N-truncated Igs through specific cross-linking to induce immune activation. Van't Hoff analysis revealed that this interaction is enthalpy-driven, with a small entropy loss, and results from differential scanning calorimetry indicated the instability of the putative LILRA2-binding site, the Fab region of the N-truncated Ig. Atomic force microscopy revealed that N truncation does not cause significant structural changes in Ig. Furthermore, mutagenesis analysis identified the hydrophobic region of LILRA2 domain 2 as the N-truncated Ig-binding site, representing a novel ligand-binding site for the LILR family. These results provide detailed insights into the molecular regulation of LILR-mediated immune responses targeting ligands that have been modified by bacteria.


Assuntos
Fragmentos Fab das Imunoglobulinas/química , Receptores Imunológicos/química , Bactérias/imunologia , Humanos , Fragmentos Fab das Imunoglobulinas/imunologia , Microscopia de Força Atômica , Receptores Imunológicos/imunologia , Ressonância de Plasmônio de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA