Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(9): 1067-1074, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38619104

RESUMO

NANOG protein levels correlate with stem cell pluripotency. NANOG concentrations fluctuate constantly with low NANOG levels leading to spontaneous cell differentiation. Previous literature implicated Pin1, a phosphorylation-dependent prolyl isomerase, as a key player in NANOG stabilization. Here, using NMR spectroscopy, we investigate the molecular interactions of Pin1 with the NANOG unstructured N-terminal domain that contains a PEST sequence with two phosphorylation sites. Phosphorylation of NANOG PEST peptides increases affinity to Pin1. By systematically increasing the amount of cis PEST conformers, we show that the peptides bind tighter to the prolyl isomerase domain (PPIase) of Pin1. Phosphorylation and cis Pro enhancement at both PEST sites lead to a 5-10-fold increase in NANOG binding to the Pin1 WW domain and PPIase domain, respectively. The cis-populated NANOG PEST peptides can be potential inhibitors for disrupting Pin1-dependent NANOG stabilization in cancer stem cells.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA , Proteína Homeobox Nanog , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/genética , Proteína Homeobox Nanog/metabolismo , Proteína Homeobox Nanog/genética , Fosforilação , Humanos , Estabilidade Proteica , Ligação Proteica , Estereoisomerismo
2.
PLoS One ; 19(4): e0294474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38558002

RESUMO

The growing prevalence of antibiotic resistance has made it imperative to search for new antimicrobial compounds derived from natural products. In the present study, Brevibacillus laterosporus TSA31-5, isolated from red clay soil, was chosen as the subject for conducting additional antibacterial investigations. The fractions exhibiting the highest antibacterial activity (30% acetonitrile eluent from solid phase extraction) were purified through RP-HPLC. Notably, two compounds (A and B) displayed the most potent antibacterial activity against both Escherichia coli and Staphylococcus aureus. ESI-MS/MS spectroscopy and NMR analysis confirmed that compound A corresponds to brevicidine and compound B to brevibacillin. Particularly, brevicidine displayed notable antibacterial activity against Gram-negative bacteria, with a minimum inhibitory concentration (MIC) range of 1-8 µg/mL. On the other hand, brevibacillin exhibited robust antimicrobial effectiveness against both Gram-positive bacterial strains (MIC range of 2-4 µg/mL) and Gram-negative bacteria (MIC range of 4-64 µg/mL). Scanning electron microscopy analysis and fluorescence assays uncovered distinctive morphological alterations in bacterial cell membranes induced by brevicidine and brevibacillin. These observations imply distinct mechanisms of antibacterial activity exhibited by the peptides. Brevicidine exhibited no hemolysis or cytotoxicity up to 512 µg/mL, comparable to the negative control. This suggests its promising therapeutic potential in treating infectious diseases. Conversely, brevibacillin demonstrated elevated cytotoxicity in in vitro assays. Nonetheless, owing to its noteworthy antimicrobial activity against pathogenic bacteria, brevibacillin could still be explored as a promising antimicrobial agent.


Assuntos
Anti-Infecciosos , Bacillus , Brevibacillus , Espectrometria de Massas em Tandem , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
3.
Antioxidants (Basel) ; 12(10)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37891872

RESUMO

Ehretia tinifolia (E. tinifolia) L., an evergreen tree with substantial biological activity, including antioxidant and anti-inflammatory effects, has been used in many herbal and traditional medicines. To elucidate its antioxidant and anti-inflammatory activity and the underlying mechanisms, we applied a methanol extract of E. tinifolia (ETME) to lipopolysaccharide (LPS)-stimulated mouse immortalized Kupffer cells. ETME suppressed the LPS-induced increase in nitric oxide, a mediator for oxidative stress and inflammation, and restored LPS-mediated depletion of total glutathione level by stabilizing antioxidative nuclear factor erythroid 2-related factor 2 (Nrf2) and the subsequent increase in heme oxygenase-1 levels. Furthermore, ETME inhibited the LPS-induced production of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1ß, and IL-6. The inhibitory effects of ETME on pro-inflammatory responses were regulated by ETME-mediated dephosphorylation of mitogen-activated protein kinases (MAPKs: p38, p44/p42, and stress-associated protein kinase/c-Jun N-terminal kinase) and inhibition of nuclear localization of nuclear factor kappa B (NF-κB). These results suggest that ETME is a possible candidate for protecting Kupffer cells from LPS-mediated oxidative stress and excessive inflammatory responses by activating antioxidant Nrf2/HO-1 and inhibiting pro-inflammatory NF-κB and MAPKs, respectively.

4.
Sci Rep ; 13(1): 1238, 2023 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-36690720

RESUMO

Cathelicidin antimicrobial peptides have an extended and/or unstructured conformation in aqueous solutions but fold into ordered conformations, such as the α-helical structure, when interacting with cellular membranes. These structural transitions can be directly correlated to their antimicrobial activity and its underlying mechanisms. SMAP-18, the N-terminal segment (residues 1-18) of sheep cathelicidin (SMAP-29), is known to kill microorganisms by translocating across membranes and interacting with their nucleic acids. The amino acid sequence of SMAP-18 contains three Gly residues (at positions 2, 7, and 13) that significantly affect the flexibility of its peptide structure. This study investigated the role of Gly residues in the structure, membrane interaction, membrane translocation, and antimicrobial mechanisms of SMAP-18. Five analogs were designed and synthesized through Gly → Ala substitution (i.e., G2A, G7A, G13A, G7,13A, and G2,7,13A); these substitutions altered the helical content of SMAP-18 peptides. We found that G7,13A and G2,7,13A changed their mode of action, with circular dichroism and nuclear magnetic resonance studies revealing that these analogs changed the structure of SMAP-18 from a random coil to an α-helical structure. The results of this experiment suggest that the Gly residues at positions 7 and 13 in SMAP-18 are the structural and functional determinants that control its three-dimensional structure, strain-specific activity, and antimicrobial mechanism of action. These results provide valuable information for the design of novel peptide-based antibiotics.


Assuntos
Anti-Infecciosos , Catelicidinas , Animais , Ovinos , Catelicidinas/química , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Sequência de Aminoácidos , Membrana Celular/metabolismo , Dicroísmo Circular
5.
Front Immunol ; 13: 1007285, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439089

RESUMO

Emerging data have suggested that single short peptides have limited success as a cancer vaccine; however, extending the short peptides into longer multi-epitope peptides overcame the immune tolerance and induced an immune response. Moreover, the combination of adjuvants such as lenalidomide and anti-programmed cell death protein 1 (PD1) with a peptide vaccine showed potential vaccine effects in previous studies. Therefore, the effects of a long multi-epitope peptide vaccine in combination with lenalidomide and anti-PD1 were analyzed in this study. Long multi-epitope peptides from two MHCI peptides (BIRC597-104 and EphA2682-689) and the pan-human leukocyte antigen-DR isotype (HLA-DR) binding epitope (PADRE) were synthesized. The therapeutic effects of long multi-epitope peptides in combination with lenalidomide and anti-PD1 were confirmed in the murine GL261 intracranial glioma model. Immune cells' distribution and responses to the long multi-epitope peptides in combination with these adjuvants were also estimated in the spleens, lymph nodes, and tumor tissues. The difference between long multi-epitope peptides and a cocktail of multi-epitope peptides combined with lenalidomide and anti-PD1 was also clarified. As a result, long multi-epitope peptides combined with lenalidomide and anti-PD1 prolonged the survival of mice according to the suppression of tumor growth in an intracranial mouse model. While long multi-epitope peptides combined with these adjuvants enhanced the percentages of activated and memory effector CD8+ T cells, the increase in percentages of regulatory T cells (Tregs) was observed in a cocktail of multi-epitope peptides combined with lenalidomide and anti-PD1 group in the tumors. Long multi-epitope peptides combined with these adjuvants also enhanced the function of immune cells according to the enhanced pro-inflammatory cytokines and cytotoxicity against GL261 cells in ex vivo. In conclusion, long multi-epitope peptides composed of MHCI peptides, BIRC5 and EphA2, and the MHCII peptide, PADRE, in combination with lenalidomide and anti-PD1 has the potential to improve the therapeutic effects of a vaccine against GBM.


Assuntos
Glioblastoma , Camundongos , Animais , Humanos , Epitopos , Glioblastoma/terapia , Linfócitos T CD8-Positivos , Lenalidomida , Vacinas de Subunidades Antigênicas , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos/farmacologia , Peptídeos
6.
Int J Mol Sci ; 23(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35054904

RESUMO

Radioactive isotopes are used as drugs or contrast agents in the medical field after being conjugated with chelates such as DOTA, NOTA, DTPA, TETA, CyDTA, TRITA, and DPDP. The N-terminal sequence of human serum albumin (HSA) is known as a metal binding site, such as for Co2+, Cu2+, and Ni2+. For this study, we designed and synthesized wAlb12 peptide from the N-terminal region of HSA, which can bind to cobalt, to develop a peptide-based chelate. The wAlb12 with a random coil structure tightly binds to the Co(II) ion. Moreover, the binding property of wAlb12 toward Co(II) was confirmed using various spectroscopic experiments. To identify the binding site of wAlb12, the analogs were synthesized by alanine scanning mutagenesis. Among them, H3A and Ac-wAlb12 did not bind to Co(II). The analysis of the binding regions confirmed that the His3 and α-amino group of the N-terminal region are important for Co(II) binding. The wAlb12 bound to Co(II) with Kd of 75 µM determined by isothermal titration calorimetry when analyzed by a single-site binding model. For the use of wAlb12 as a chelate in humans, its cytotoxicity and stability were investigated. Trypsin stability showed that the wAlb12 - Co(II) complex was more stable than wAlb12 alone. Furthermore, the cell viability analysis showed wAlb12 and wAlb12 + Co(II) to be non-toxic to the Raw 264.7 and HEK 293T cell lines. Therefore, a hot radioactive isotope such as cobalt-57 will have the same effect as a stable isotope cobalt. Accordingly, we expect wAlb12 to be used as a peptide chelate that binds with radioactive isotopes.


Assuntos
Quelantes/metabolismo , Cobalto/metabolismo , Peptídeos/metabolismo , Albumina Sérica Humana/metabolismo , Substituição de Aminoácidos , Animais , Sítios de Ligação , Sobrevivência Celular , Quelantes/química , Cromatografia Líquida de Alta Pressão , Cobalto/química , Humanos , Cinética , Camundongos , Peptídeos/química , Ligação Proteica , Estabilidade Proteica , Células RAW 264.7 , Análise Espectral , Relação Estrutura-Atividade
7.
Front Immunol ; 13: 1009484, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36703992

RESUMO

Various combination treatments have been considered to attain the effective therapy threshold by combining independent antitumor mechanisms against the heterogeneous characteristics of tumor cells in malignant brain tumors. In this study, the natural killer (NK) cells associated with bevacizumab (Bev) plus irinotecan (Iri) against glioblastoma multiforme (GBM) were investigated. For the experimental design, NK cells were expanded and activated by K562 cells expressing the OX40 ligand and membrane-bound IL-18 and IL-21. The effects of Bev and Iri on the proliferation and NK ligand expression of GBM cells were evaluated through MTT assay and flow cytometry. The cytotoxic effects of NK cells against Bev plus Iri-treated GBM cells were also predicted via the LDH assay in vitro. The therapeutic effect of different injected NK cell routes and numbers combined with the different doses of Bev and Iri was confirmed according to tumor size and survival in the subcutaneous (s.c) and intracranial (i.c) U87 xenograft NOD/SCID IL-12Rγnull mouse model. The presence of injected-NK cells in tumors was detected using flow cytometry and immunohistochemistry ex vivo. As a result, Iri was found to affect the proliferation and NK ligand expression of GBM cells, while Bev did not cause differences in these cellular processes. However, the administration of Bev modulated Iri efficacy in the i.c U87 mouse model. NK cells significantly enhanced the cytotoxic effects against Bev plus Iri-treated GBM cells in vitro. Although the intravenous (IV) injection of NK cells in combination with Bev plus Iri significantly reduced the tumor volume in the s.c U87 mouse model, only the direct intratumorally (IT) injection of NK cells in combination with Bev plus Iri elicited delayed tumor growth in the i.c U87 mouse model. Tumor-infiltrating NK cells were detected after IV injection of NK cells in both s.c and i.c U87 mouse models. In conclusion, the potential therapeutic effect of NK cells combined with Bev plus Iri against GBM cells was limited in this study. Accordingly, further research is required to improve the accessibility and strength of NK cell function in this combination treatment.


Assuntos
Antineoplásicos , Glioblastoma , Camundongos , Animais , Humanos , Bevacizumab/farmacologia , Bevacizumab/uso terapêutico , Glioblastoma/tratamento farmacológico , Irinotecano/farmacologia , Irinotecano/uso terapêutico , Ligantes , Camundongos Endogâmicos NOD , Camundongos SCID , Antineoplásicos/uso terapêutico , Células Matadoras Naturais
8.
Food Sci Biotechnol ; 30(13): 1685-1693, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34925943

RESUMO

In this study, we investigated the multi-functionality of bioactive peptides derived from fermented skate (Raja kenojei) skin gelatin hydrolysates. The extracted gelatin was hydrolyzed using a combination of food grade subtilisin and actinidin. The hydrolysates were then fractionated via ultrafiltration, and the fractions with the highest dipeptidyl peptidase-IV (DPP-IV) inhibitory, angiotensin-converting enzyme (ACE) inhibitory, and antibacterial proprieties were further purified via ion exchange, solid phase extraction, and reverse phase high performance liquid chromatography. Analysis of the obtained extract revealed a direct relationship between hydrolysis time, degree of hydrolysis, and biological activities. The peptides GRPGNRGE (P1) and AKDYEVDAT (P2), with a molecular weight of 841.42 and 1010.46 Da, respectively, were identified through tandem mass spectrometry. P1 had a lower ACE and DPP-IV inhibitory activity, with a half maximal inhibitory concentration [IC50] of 0.74 and 0.69 mg.mL-1, respectively, than P2 (0.52 and 0.58 mg.mL-1, respectively). Antibacterial analysis showed similar results, with a minimum inhibitory concentration of 0.52 and 0.46 mg.mL-1 against Staphylococcus aureus (highest activity) and 1.75 and 1.44 mg.mL-1 against Klebsiella pneumonia (lowest activity) for P1 and P2, respectively. Overall, this study revealed two fish gelatin-derived multifunctional peptides, exhibiting ACE inhibitory, DPP-IV inhibitory, and antibacterial activities, as natural nutraceuticals. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00998-6.

9.
Sci Rep ; 11(1): 7401, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33795773

RESUMO

The multifunctional properties of fish gelatin hydrolysates have not been completely elucidated. Here, the biological characterization of these peptides was performed to engineer multifunctional peptides. Bioactive peptides were produced from mackerel byproducts via successive enzymatic hydrolysis reactions using subtilisin A and actinidin as microbial and herbal proteases. The antibacterial activity against both gram-negative and -positive food-borne pathogens, including Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Klebsiella pneumoniae, as well as the inhibitory potential of angiotensin-converting enzyme (ACE) and dipeptidyl peptidase IV (DPP-IV), was accessed in vitro. The synthesized peptides demonstrated multifunctional properties, which were further confirmed by in silico protocols. The ACE and DPP-IV inhibitory (IC50) values of P1, P2, and P3 were 0.92 and 0.87, 0.51 and 0.93, 0.78 and 1.16 mg mL-1, respectively. Moreover, the binding energy was sufficient for all three peptides to inhibit both ACE and DPP-IV enzymes with excellent three-dimensional conformation (RMSD = 0.000) for all six docking mechanisms.


Assuntos
Biologia Computacional , Proteínas de Peixes/química , Gelatina/química , Peptídeos/química , Engenharia de Proteínas , Proteômica , Inibidores da Enzima Conversora de Angiotensina/química , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Animais , Sítios de Ligação , Cromatografia/métodos , Biologia Computacional/métodos , Gelatina/isolamento & purificação , Hidrólise , Peptídeos/farmacologia , Peptidil Dipeptidase A/química , Ligação Proteica , Conformação Proteica , Engenharia de Proteínas/métodos , Proteômica/métodos , Análise Espectral , Relação Estrutura-Atividade , Ultrafiltração/métodos
10.
FASEB J ; 35(4): e21479, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33710680

RESUMO

Triggering receptor expressed on myeloid cells 2 (TREM2) is a cell surface receptor expressed on macrophages, microglial cells, and pre-osteoclasts, and that participates in diverse cellular function, including inflammation, bone homeostasis, neurological development, and coagulation. In spite of the indispensable role of the TREM2 protein in the maintenance of immune homeostasis and osteoclast differentiation, the exact ligand for TREM2 has not yet been identified. Here, we report a putative TREM2 ligand which is secreted from MC38 cells and identified as a cyclophilin A (CypA). A specific interaction between CypA and TREM2 was shown at both protein and cellular levels. Exogenous CypA specifically interacted and co-localized with TREM2 in RAW264.7 cells, and the physical interactions were shown to regulate TREM2 signaling transduction. The Pro144 residue in the extracellular domain of TREM2 was found to be the specific binding site of CypA. When considered together, this provides evidence that CypA interacts specifically with TREM2 as a potent ligand.


Assuntos
Ciclofilina A/metabolismo , Ligantes , Microglia/metabolismo , Células Mieloides/metabolismo , Animais , Proteínas de Transporte/metabolismo , Células Cultivadas , Humanos , Macrófagos/metabolismo , Osteoclastos/metabolismo
11.
J Med Chem ; 61(24): 11101-11113, 2018 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-30475621

RESUMO

Here we describe the three-dimensional structure and antimicrobial mechanism of mBjAMP1, an antimicrobial peptide (AMP) isolated from Branchiostoma japonicum. The structure of mBjAMP1 was determined by 2D solution NMR spectroscopy and revealed a novel α-hairpinin-like scaffold stabilized by an intramolecular disulfide bond. mBjAMP1 showed effective growth inhibition and bactericidal activities against pathogenic bacteria but was not cytotoxic to mammalian cells. Antimicrobial mechanism studies using fluorescence-based experiments demonstrated that mBjAMP1 did not disrupt membrane integrity. Laser-scanning confocal microscopy indicated that mBjAMP1 is able to penetrate the bacterial cell membrane without causing membrane disruption. Moreover, gel retardation assay suggested that mBjAMP1 directly binds to bacterial DNA as an intracellular target. Collectively, mBjAMP1 may inhibit biological functions by binding to DNA or RNA after penetrating the bacterial cell membrane, thereby causing cell death. These results suggest that mBjAMP1 may present a promising template for the development of peptide-based antibiotics.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anfioxos/química , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Membrana Celular/efeitos dos fármacos , Dicroísmo Circular , DNA Bacteriano/metabolismo , Dissulfetos/química , Eritrócitos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Camundongos , Testes de Sensibilidade Microbiana , Microscopia Confocal , Conformação Proteica , Células RAW 264.7
12.
Protein Expr Purif ; 147: 17-21, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29454031

RESUMO

Rattusin is an α-defensin-related peptide isolated from the small intestine of rats. The primary sequence of linear rattusin is composed of 31 amino acids containing five cysteines with a unique spacing pattern. It forms a homodimeric scaffold in which the primary structure occurs in an antiparallel fashion formed by five intermolecular disulfide (SS) bonds. Rattusin is a highly potent antibiotic, which not only exhibits broad-spectrum antimicrobial activity, but also maintains its antimicrobial activity at physiological salt concentrations. Therefore, to develop new antibiotics based on rattusin, structural and functional studies of rattusin should be performed. For this purpose, large amounts of linear rattusin precursor must be obtained through appropriate preparation methods. Therefore, we established a mass production technique for linear rattusin by using recombinant protein expression and purification procedures. We verified that structure and activity of the recombinant rattusin are identical to the chemically synthesized rattusin. The described method for producing recombinant rattusin provides a high yield of rattusin, which can be used to study the biochemical and functional properties of rattusin and for the development of rattusin-based peptide antibiotics.


Assuntos
Dissulfetos/química , alfa-Defensinas/química , Sequência de Aminoácidos , Animais , Anti-Infecciosos/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Sequência de Bases , Cisteína/química , Cisteína/genética , Cisteína/metabolismo , Dissulfetos/metabolismo , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Multimerização Proteica , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , alfa-Defensinas/genética , alfa-Defensinas/metabolismo
13.
Biomol NMR Assign ; 12(1): 95-98, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29086898

RESUMO

Periostin, an extracellular matrix protein, is secreted by fibroblasts and is overexpressed in various types of cancers. The four internal repeat fasciclin 1 (FAS1) domains of human periostin play crucial roles in promoting tumor metastasis and progression via interaction with cell surface integrins. Among four FAS1 domains of human periostin, the fourth FAS1 domain (FAS1-IV) was prepared for NMR study, since only FAS1-IV was highly soluble, and showed a well-dispersed 2D 1H-15N HSQC spectrum. Here, we report nearly complete backbone and side chain resonance assignments and a secondary structural analysis of the FAS1-IV domain as first steps toward the structure determination of FAS1-IV of human periostin.


Assuntos
Moléculas de Adesão Celular/química , Ressonância Magnética Nuclear Biomolecular , Humanos , Domínios Proteicos
14.
Sci Rep ; 7: 45282, 2017 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-28345637

RESUMO

Defensin peptides are essential for innate immunity in humans and other living systems, as they provide protection against infectious pathogens and regulate the immune response. Here, we report the solution structure of rattusin (RTSN), an α-defensin-related peptide, which revealed a novel C2-symmetric disulfide-linked dimeric structure. RTSN was synthesized by solid-phase peptide synthesis (SPPS) and refolded by air oxidation in vitro. Dimerization of the refolded RTSN (r-RTSN) resulted from five intermolecular disulfide (SS) bond exchanges formed by ten cysteines within two protomer chains. The SS bond pairings of r-RTSN were determined by mass analysis of peptide fragments cleaved by trypsin digestion. In addition to mass analysis, nuclear magnetic resonance (NMR) experiments for a C15S mutant and r-RTSN confirmed that the intermolecular SS bond structure of r-RTSN showed an I-V', II-IV', III-III', IV-II', V-I' arrangement. The overall structure of r-RTSN exhibited a cylindrical array, similar to that of ß-sandwich folds, with a highly basic surface. Furthermore, fluorescence spectroscopy results suggest that r-RTSN exerts bactericidal activity by damaging membrane integrity. Collectively, these results provide a novel structural scaffold for designing highly potent peptide-based antibiotics suitable for use under various physiological conditions.

15.
Org Lett ; 18(15): 3678-81, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27404658

RESUMO

A new class of peptoid-based peptidomimetics composed of oligomers of N-substituted ß(2)-homoalanines is reported. Design, solid-phase synthesis, and preliminary circular dichroism studies of oligomers of N-alkylated ß(2)-homoalanines consisting of up to 8-mers are described.

16.
Biochem Biophys Res Commun ; 459(4): 610-6, 2015 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-25753201

RESUMO

Viral protein genome-linked (VPg) proteins play a critical role in the life cycle of vertebrate and plant positive-sense RNA viruses by acting as a protein primer for genome replication and as a protein cap for translation initiation. Here we report the solution structure of the porcine sapovirus VPg core (VPg(C)) determined by multi-dimensional NMR spectroscopy. The structure of VPg(C) is composed of three α-helices stabilized by several conserved hydrophobic residues that form a helical bundle core similar to that of feline calicivirus VPg. The putative nucleotide acceptor Tyr956 within the first helix of the core is completely exposed to solvent accessible surface to facilitate nucleotidylation by viral RNA polymerase. Comparison of VPg structures suggests that the surface for nucleotidylation site is highly conserved among the Caliciviridae family, whereas the backbone core structures are different. These structural features suggest that caliciviruses share common mechanisms of VPg-dependent viral replication and translation.


Assuntos
Sapovirus/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Animais , Clonagem Molecular , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Suínos , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA