RESUMO
An ultrasensitive fluorescence detection strategy of chloramphenicol (CAP) was developed based on product catalysis of tetrahedral DNA framework (TDF) and fluorescent quenching of MIL-101(Fe). The product was used to catalyze the reaction. As the concentration of catalyst increased, the reaction time was significantly shorted to 21 min which was much shorter than other isothermal amplification technologies. Moreover, the multiple fluorophores of TDF and high efficient quenching ability of MIL-101(Fe) provided better performance with a linear range for CAP detecting from 1.6 pM to 80 pM and the limit of detection (LOD) as low as 0.67 pM. In addition, it also demonstrated good specificity and resistance to interference from other related antibiotics. Importantly, this strategy exhibited satisfactory relative standard deviation and recovery results for practical application, exhibiting a favorable application prospect in CAP analysis.
Assuntos
Cloranfenicol , DNA , Corantes Fluorescentes , Limite de Detecção , Estruturas Metalorgânicas , Espectrometria de Fluorescência , Cloranfenicol/análise , Cloranfenicol/química , Estruturas Metalorgânicas/química , Catálise , DNA/química , Espectrometria de Fluorescência/métodos , Corantes Fluorescentes/química , Fluorescência , Antibacterianos/análise , Antibacterianos/químicaRESUMO
Tumor invasion is the hallmark of tumor malignancy. The invasive infiltration pattern of tumor cells located at the leading edge is highly correlated with metastasis and unfavorable patient outcomes. However, the regulatory mechanisms governing tumor malignancy at the invasive margin remain unclear. The IL-17B/IL-17RB pathway is known to promote pancreatic cancer invasion and metastasis, yet the specific mechanisms underlying IL-17RB upregulation during invasion are poorly understood. In this study, we unveiled a multistep process for IL-17RB upregulation at the invasive margin, which occurs through direct communication between tumor cells and fibroblasts. Tumor ATP1A1 facilitates plasma membrane expression of SEMA7A, which binds to and induces IGFBP-3 secretion from fibroblasts. The resulting gradient of IGFBP-3 influences the direction and enhances IL-17RB expression to regulate SNAI2 in invasion. These findings highlight the importance of local tumor-fibroblast interactions in promoting cancer cell invasiveness, potentially leading to the development of new therapeutic strategies targeting this communication.
RESUMO
Oocytes are the largest cell type in multicellular animals. Here, we show that mRNA transporter 4 (MTR4) is indispensable for oocyte growth and functions as part of the RNA surveillance mechanism, which is responsible for nuclear waste RNA clearance. MTR4 ensures the normal post-transcriptional processing of maternal RNAs, their nuclear export to the cytoplasm, and the accumulation of properly processed transcripts. Oocytes with Mtr4 knockout fail to accumulate sufficient and normal transcripts in the cytoplasm and cannot grow to normal sizes. MTR4-dependent RNA surveillance has a previously unrecognized function in maintaining a stable nuclear environment for the establishment of non-canonical histone H3 lysine-4 trimethylation and chromatin reorganization, which is necessary to form a nucleolus-like structure in oocytes. In conclusion, MTR4-dependent RNA surveillance activity is a checkpoint that allows oocytes to grow to a normal size, undergo nuclear and cytoplasmic maturation, and acquire developmental competence.
RESUMO
The incidence of treatment failure due to multidrug-resistant pathogens elevated over the years; the rate is much higher than new antibiotic drug discovery. Therefore, bromophenol derivatives as potential antibacterial agents on Staphylococcus aureus and MRSA were explored in this research via integrating chemistry, microbiology, and pharmacology to address significant knowledge gaps pertaining to the antibacterial activity of bromophenols based on their functional groups. Surprisingly, a simple molecule, 3-bromo-2,6-dihydroxyacetophenone (2), exhibited good anti-S. aureus activity and even MRSA, a drug-resistant strain. In addition, compound 2 also inhibited a common resistant pathway of pathogens, biofilm formation of S. aureus and MRSA. Moreover, the therapeutic index of 2 is up to 598, which can be viewed as highly selective and having low toxicity to human HEK-293 cells. Although these compounds displayed less effectiveness for the Gram-negative bacterium, Pseudomonas aeruginosa, they still manifested some effects on the virulence properties of P. aeruginosa, such as biofilm formation, pyocyanin production, and swarming motility. In silico analyses of the structure-activity relationship as well as ADMET properties were discussed in the end. This study shed some light on the antibacterial activities of bromophenols.
RESUMO
With the increase of chemotherapy frequency for breast cancer, the drug resistance rate of patients is rising, accompanied by cell invasion and metastasis, thus causing mortality. We aimed to explore the mechanism by which Platycodon grandiflorus affects breast cancer cells in terms of the doxorubicin (Dox) resistance and epithelial-mesenchymal transition (EMT) via the p38 mitogen-activated protein kinase (p38 MAPK) signaling pathway. MCF-7/R cell lines with resistance to Dox were established. After 24 h of culture with DMEM (blank group), they were divided into Platycodon grandiflorus, Platycodon grandiflorus + Ophiopogon japonicus, Platycodon grandiflorus + Curcumae Rhizoma, Platycodon grandiflorus + Curcumae Rhizoma + U46619 groups. Flow cytometry, colony formation assay, as well as Transwell assay were performed to examine the cells for apoptosis, proliferation, and invasion, respectively. Western blotting was performed to measure the phosphorylated (p)-p38 MAPK-to-p38 MAPK ratio together with N-cadherin, vimentin, ß-catenin, and E-cadherin protein expressions. Compared with the blank group, the half maximal inhibitory concentration (IC50), number of cell colonies, number of invading cells and expressions of proteins related to EMT (i.e. N-cadherin, vimentin, and ß-catenin) significantly reduced, but increases in apoptosis rate, p-p38 MAPK/p38 MAPK ratio and E-cadherin protein expression were observed in different groups (P < 0.05). Compared with the Platycodon grandiflorus + Curcumae Rhizoma group, the Platycodon grandiflorus + Curcumae Rhizoma + U46619 group had significantly decreased IC50, cell colony count, invading cell count and ß-catenin, N-cadherin, and vimentin expressions, in addition to elevated E-cadherin protein expression, apoptosis rate, and p-p38 MAPK/p38 MAPK ratio (P < 0.05). Platycodon grandiflorus can reverse the resistance of breast cancer cells to Dox and regulate their biological activities by activating the p38 MAPK signaling pathway.
RESUMO
Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown. Here, we identify a small population of Set domain-containing protein 4 (Setd4)-expressing SSCs that occur in a relatively dormant state in the mouse seminiferous tubule. Extant beyond high-dose chemoradiotherapy, these cells then activate to recover spermatogenesis. Recovery fails when Setd4+ SSCs are deleted. Confirmed to be of fetal origin, these Setd4+ SSCs are shown to facilitate early testicular development and also contribute to steady-state spermatogenesis in adulthood. Upon activation, chromatin remodeling increases their genome-wide accessibility, enabling Notch1 and Aurora activation with corresponding silencing of p21 and p53. Here, Setd4+ SSCs are presented as the originators of both testicular development and spermatogenesis recovery in chemoradiotherapy-induced infertility.
Assuntos
Infertilidade Masculina , Espermatogênese , Masculino , Animais , Espermatogênese/efeitos dos fármacos , Espermatogênese/efeitos da radiação , Infertilidade Masculina/terapia , Camundongos , Quimiorradioterapia/efeitos adversos , Quimiorradioterapia/métodos , Células-Tronco/metabolismo , Células-Tronco/efeitos da radiação , Camundongos Endogâmicos C57BL , Proteína Supressora de Tumor p53/metabolismo , Proteína Supressora de Tumor p53/genética , Montagem e Desmontagem da Cromatina/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Receptor Notch1/metabolismo , Receptor Notch1/genéticaRESUMO
White Roman goose (Anser anser domesticus) feathers, comprised of oriented conical barbules, are coated with gland-secreted preening oils to maintain a long-term nonwetting performance for surface swimming. The geese are accustomed to combing their plumages with flat bills in case they are contaminated with oleophilic substances, during which the amphiphilic saliva spread over the barbules greatly impairs their surface hydrophobicities and allows the trapped contaminants to be anisotropically self-cleaned by water flows. Particularly, the superhydrophobic behaviors of the goose feathers are recovered as well. Bioinspired by the switchable anisotropic self-cleaning functionality of white Roman geese, superhydrophobic unidirectionally inclined conical structures are engineered through the integration of a scalable colloidal self-assembly technology and a colloidal lithographic approach. The dependence of directional sliding properties on the shape, inclination angle, and size of conical structures is systematically investigated in this research. Moreover, their switchable anisotropic self-cleaning functionalities are demonstrated by Sudan blue II/water (0.01%) separation performances. The white Roman goose feather-inspired coatings undoubtedly offer a new concept for developing innovative applications that require directional transportation and the collection of liquids.
Assuntos
Plumas , Gansos , Animais , Plumas/química , Anisotropia , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície , Coloides/químicaRESUMO
Aims: To identify and analyze genes closely related to the progression of nonalcoholic steatohepatitis (NASH) by employing a combination of single-cell RNA sequencing and machine-learning algorithms. Main methods: Single-cell RNA sequencing (scRNA-seq) analysis was performed to find the cell population with the most significant differences between the Chow and NASH groups. This approach was used to validate the developmental trajectory of this cell population and investigate changes in cellular communication and important signaling pathways among these cells. Subsequently, high dimensional Weighted Gene Co-expression Network Analysis (hdWGCNA) was used to find the key modules in NASH. Machine learning analyses were performed to further identify core genes. Deep learning techniques were applied to elucidate the correlation between core genes and immune cells. The accuracy of this correlation was further confirmed using deep learning techniques, specifically Convolutional Neural Networks. Key findings: By comparing scRNA-seq data between the Chow and NASH groups, we have observed a notable distinction existing in the Kupffer cell population. Signaling interactions between hepatic macrophages and other cells were significantly heightened in the NASH group. Through subsequent analysis of macrophage subtypes and key modules, we identified 150 genes tightly associated with NASH. Finally, we highlighted the 16 most significant core genes using multiple iterations of machine learning. Furthermore, we pointed out the close relationship between core genes and immune cells. Significances: Using scRNA-seq analysis and machine learning, we can distinguish NASH-related genes from large genetic datasets, providing theoretical support in finding potential targets for the development of novel therapies.
RESUMO
Alpha-foetoprotein (AFP) is taken as a diagnostic tumor marker for the screening and diagnosis of cancer. Nucleic acid-based isothermal amplification strategies are emerging as a potential technology in early screening and clinical diagnosis of AFP. The leakages between hairpins dramatically increase the background and reduce the sensitivity. Thus, it is necessary to develop some strategies to reduce the leakage for isothermal amplification strategies. A DNAzyme-locked leakless enzyme-free amplification system was developed for AFP detection in liver cancer and breast cancer. AFP could open the apt-hairpin and initiate the catalytic hairpin assembly (CHA) reaction to produce a Y-shaped duplex. Two tails of a Y-shaped duplex cleaved the two kinds of leakless hairpins. Then, the third tail of the Y-shaped duplex catalyzed the second CHA between the cleaved leakless hairpins to recover the fluorescent intensity. The limit of detection reached 5 fg/mL by the two levels of signal amplifications. Importantly, the leakless hairpin design effectively reduced leakage between hairpins and weakened the background. In addition, it also showed a great promising potential for AFP detection in early screening and clinical diagnosis.
Assuntos
Neoplasias da Mama , DNA Catalítico , Limite de Detecção , Neoplasias Hepáticas , Técnicas de Amplificação de Ácido Nucleico , alfa-Fetoproteínas , DNA Catalítico/química , DNA Catalítico/metabolismo , alfa-Fetoproteínas/análise , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos , Neoplasias da Mama/diagnóstico , Neoplasias Hepáticas/diagnóstico , Feminino , Biomarcadores Tumorais/sangue , Técnicas Biossensoriais/métodosRESUMO
Liver sinusoidal endothelial cells (LSECs) are highly specialized endothelial cells (ECs) that play an important role in liver development and regeneration. Additionally, it is involved in various pathological processes, including steatosis, inflammation, fibrosis and hepatocellular carcinoma. However, the rapid dedifferentiation of LSECs after culture greatly limits their use in vitro modeling for biomedical applications. In this study, we developed a highly efficient protocol to induce LSEC-like cells from human induced pluripotent stem cells (hiPSCs) in only 8 days. Using single-cell transcriptomic analysis, we identified several novel LSEC-specific markers, such as EPAS1, LIFR, and NID1, as well as several previously revealed markers, such as CLEC4M, CLEC1B, CRHBP and FCN3. These LSEC markers are specifically expressed in our LSEC-like cells. Furthermore, hiPSC-derived cells expressed LSEC-specific proteins and exhibited LSEC-related functions, such as the uptake of acetylated low density lipoprotein (ac-LDL) and immune complex endocytosis. Overall, this study confirmed that our novel protocol allowed hiPSCs to rapidly acquire an LSEC-like phenotype and function in vitro. The ability to generate LSECs efficiently and rapidly may help to more precisely mimic liver development and disease progression in a liver-specific multicellular microenvironment, offering new insights into the development of novel therapeutic strategies.
Assuntos
Diferenciação Celular , Células Endoteliais , Células-Tronco Pluripotentes Induzidas , Fígado , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/citologia , Fígado/metabolismo , Fígado/citologia , Análise de Célula Única/métodos , Células Cultivadas , Biomarcadores/metabolismo , Lipoproteínas LDL/metabolismo , Perfilação da Expressão GênicaRESUMO
BACKGROUND: At present, the discovery of new biomarkers is of great significance for the early diagnosis, treatment and prognosis assessment of ovarian cancer. Previous findings indicated that aberrant G-protein-coupled receptor 176 (GPR176) expression might contribute to tumorigenesis and subsequent progression. However, the expression of GPR176 and the molecular mechanisms in ovarian cancer had not been investigated. METHODS: GPR176 expression was compared with clinicopathological features of ovarian cancer using immunohistochemical and bioinformatics analyses. GPR176-related genes and pathways were analysed using bioinformatics analysis. Additionally, the effects of GPR176 on ovarian cancer cell phenotypes were investigated. RESULTS: GPR176 expression positively correlated with elder age, clinicopathological staging, tumour residual status, and unfavourable survival of ovarian cancer, but negatively with purity loss, infiltration of B cells, and CD8+ T cells. Gene Set Enrichment Analysis showed that differential expression of GPR176 was involved in focal adhesion, ECM-receptor interaction, cell adhesion molecules and so on. STRING and Cytoscape were used to determine the top 10 nodes. Kyoto Encyclopaedia of Genes and Genomes analysis indicated that GPR176-related genes were involved in the ECM structural constituent and organisation and so on. GPR176 overexpression promoted the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion of ovarian cancer cells with overexpression of N-cadherin, Zeb1, Snail, Twist1, and under-expression of gasdermin D, caspase 1, and E-cadherin. CONCLUSION: GPR176 might be involved in the progression of ovarian cancer. It might be used as a biomarker to indicate the aggressive behaviour and poor prognosis of ovarian cancer and a target of genetic therapy.
Ovarian cancer is a gynecological cancer with high mortality. Due to the limited screening tests and treatments available, most ovarian cancer patients are diagnosed at a late stage and the prognosis is poor. The addition of new cancer diagnostic biomarkers and new intervention targets may improve quality of life and survival for patients with ovarian cancer. Previous studies have revealed the aberrant GPR176 expression might contribute to tumorigenesis and subsequent progression in many other tumours. In our study, GPR176 was found to promote the proliferation, anti-apoptosis, anti-pyroptosis, migration and invasion, EMT, and weakening the cellular adhesion of ovarian cancer cells, and involved in the Bcl-2/Bax or the PI3K/Akt/mTOR pathway. Therefore, abnormal expression of GPR176 might be served as a biomarker for aggressive behaviour and poor prognosis of ovarian cancer and a target for gene therapy.
Assuntos
Neoplasias Ovarianas , Receptores Acoplados a Proteínas G , Humanos , Feminino , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/metabolismo , Pessoa de Meia-Idade , Terapia Genética/métodos , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biologia Computacional , Prognóstico , Proliferação de Células/genética , Carcinogênese/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismoRESUMO
Circadian rhythms, the natural cycles of physical, mental, and behavioral changes that follow a roughly 24-hour cycle, are known to have a profound effect on the human body. Light plays an important role in the regulation of circadian rhythm in human body. When light from the outside enters the eyes, cones, rods, and specialized retinal ganglion cells receive the light signal and transmit it to the suprachiasmatic nucleus of the hypothalamus. The central rhythm oscillator of the suprachiasmatic nucleus regulates the rhythm oscillator of tissues all over the body. Circadian rhythms, the natural cycles of physical, mental, and behavioral changes that follow a roughly 24-hour cycle, are known to have a profound effect on the human body. As the largest organ in the human body, skin plays an important role in the peripheral circadian rhythm regulation system. Like photoreceptor cells in the retina, melanocytes express opsins. Studies show that melanocytes in the skin are also sensitive to light, allowing the skin to "see" light even without the eyes. Upon receiving light signals, melanocytes in the skin release hormones that maintain homeostasis. This process is called "photoneuroendocrinology", which supports the health effects of light exposure. However, inappropriate light exposure, such as prolonged work in dark environments or exposure to artificial light at night, can disrupt circadian rhythms. Such disruptions are linked to a variety of health issues, emphasizing the need for proper light management in daily life. Conversely, harnessing light's beneficial effects through phototherapy is gaining attention as an adjunctive treatment modality. Despite these advancements, the field of circadian rhythm research still faces several unresolved issues and emerging challenges. One of the most exciting prospects is the use of the skin's photosensitivity to treat diseases. This approach could revolutionize how we think about and manage various health conditions, leveraging the skin's unique ability to respond to light for therapeutic purposes. As research continues to unravel the complexities of circadian rhythms and their impact on health, the potential for innovative treatments and improved wellbeing is immense.
Assuntos
Ritmo Circadiano , Humanos , Ritmo Circadiano/fisiologia , Animais , Luz , Transdução de SinaisRESUMO
Combining phytochemicals and nanotechnology to improve the unfavorable innate properties of phytochemicals and develop them into potent nanomedicines to enhance antitumor efficacy has become a novel strategy for cancer chemoprevention. Melanoma is the most aggressive, metastatic, and deadly disease of the primary cutaneous neoplasms. In this study, we fabricated phytoconstituent-derived zingerone nanoparticles (NPs) and validated their effects on cell adhesion and motility in melanoma B16F10 cells. Our data indicated that zingerone NPs significantly induced cytotoxicity and anti-colony formation and inhibited cell migration and invasion. Moreover, zingerone NPs dramatically interfered with the cytoskeletal reorganization and markedly delayed the period of cell adhesion. Our results also revealed that zingerone NPs-mediated downregulation of MMPs (matrix metalloproteinases) activity is associated with inhibiting cell adhesion and motility. We further evaluated the effects of zingerone NPs on Src/FAK /Paxillin signaling, our data showed that zingerone NPs significantly inhibited the protein activities of Src, FAK, and Paxillin, indicating that they play important roles in zingerone NP-mediated anti-motility and anti-invasion in melanoma cells. Accordingly, the phytoconstituent-zingerone NPs can strengthen the inhibition of tumor growth, invasion, and metastasis in malignant melanoma. Altogether, these multi-pharmacological benefits of zingerone NPs will effectively achieve the purpose of melanoma prevention and invasion inhibition.
Assuntos
Adesão Celular , Movimento Celular , Guaiacol , Melanoma Experimental , Nanopartículas , Animais , Movimento Celular/efeitos dos fármacos , Nanopartículas/química , Camundongos , Guaiacol/análogos & derivados , Guaiacol/farmacologia , Guaiacol/química , Linhagem Celular Tumoral , Adesão Celular/efeitos dos fármacos , Melanoma Experimental/patologia , Melanoma Experimental/tratamento farmacológico , Paxilina/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/química , Transdução de Sinais/efeitos dos fármacos , Quinases da Família src/metabolismoRESUMO
Two levels of nucleic acids-based isothermal amplification normally require a long reaction time due to the low concentration of catalyst, which limits its practical application. A sensitive fluorescence assay of chloramphenicol (CAP) was developed coupled with two-level isothermal amplification using a self-powered catalyzed hairpin assembly (CHA) and entropy-driven circuit (EDC). CAP can bind with its aptamer to open its closed structure. The opened hairpin can initiate self-powered CHA and EDC. The product of CHA can circularly catalyze the CHA with increasing concentration. In principle, the product of CHA plays the role of catalyst and increases with the progression of the reaction. Compared with the normal two levels of amplification, the amplification efficiency of our strategy is much higher due to the self-powered reaction by the CHA product. Thus, the reaction time is shortened to 110 min in this strategy. Moreover, the detection limit for CAP can achieve 0.1 pM and shows promising prospects for practical application.
Assuntos
Cloranfenicol , Entropia , Limite de Detecção , Técnicas de Amplificação de Ácido Nucleico , Cloranfenicol/análise , Cloranfenicol/química , Técnicas de Amplificação de Ácido Nucleico/métodos , Catálise , Espectrometria de Fluorescência/métodos , Fluorescência , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Técnicas de Diagnóstico MolecularRESUMO
Non-alcoholic fatty liver disease (NAFLD) is a chronic disease caused by hepatic steatosis. Adenosine deaminases acting on RNA (ADARs) catalyze adenosine to inosine RNA editing. However, the functional role of ADAR2 in NAFLD is unclear. ADAR2+/+/GluR-BR/R mice (wild type, WT) and ADAR2-/-/GluR-BR/R mice (ADAR2 KO) mice are fed with standard chow or high-fat diet (HFD) for 12 weeks. ADAR2 KO mice exhibit protection against HFD-induced glucose intolerance, insulin resistance, and dyslipidemia. Moreover, ADAR2 KO mice display reduced liver lipid droplets in concert with decreased hepatic TG content, improved hepatic insulin signaling, better pyruvate tolerance, and increased glycogen synthesis. Mechanistically, ADAR2 KO effectively mitigates excessive lipid production via AMPK/Sirt1 pathway. ADAR2 KO inhibits hepatic gluconeogenesis via the AMPK/CREB pathway and promotes glycogen synthesis by activating the AMPK/GSK3ß pathway. These results provide evidence that ADAR2 KO protects against NAFLD progression through the activation of AMPK signaling pathways.
Assuntos
Adenosina Desaminase , Dieta Hiperlipídica , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Transdução de Sinais , Animais , Camundongos , Adenosina Desaminase/metabolismo , Adenosina Desaminase/genética , Adenosina Desaminase/deficiência , Proteínas Quinases Ativadas por AMP/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Obesos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/etiologia , Obesidade/metabolismo , Obesidade/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genéticaRESUMO
Isofagomine (IFG) and its analogues possess promising glycosidase inhibitory activities. However, a flexible synthetic strategy toward both C5a-functionalized IFGs remains to be explored. Here we show a practical synthesis of C5a-S and R aminomethyl IFG-based derivatives via the diastereoselective addition of cyanide to cyclic nitrone 1. Nitrone 1 was conveniently prepared on a gram scale and in high yield from inexpensive (-)-diethyl D-tartrate via a straightforward method, with a stereoselective Michael addition of a nitroolefin and a Nef reaction as key steps. A 268-membered library (134 × 2) of the C5a-functionalized derivatives was submitted to enzyme- or cell-based bio-evaluations, which resulted in the identification of a promising ß-glucocerebrosidase (GCase) stabilizer demonstrating a 2.7-fold enhancement at 25 nM in p.Asn370Ser GCase activity and a 13-fold increase at 1 µM in recombinant human GCase activity in Gaucher cell lines.
RESUMO
OBJECTIVE: To explore the correlation between peripheral blood B cell count and clinical features and prognosis of patients with newly diagnosed diffuse large B-cell lymphoma (DLBCL). METHODS: The relationship of peripheral blood B cell count with clinical features, laboratory indexes and prognosis in 67 patients with newly diagnosed DLBCL was retrospectively analyzed. RESULTS: Patients were divided into low B-cell count group (B cellï¼0.1×109/L, n=34) and high B-cell count group (B cell≥0.1×109/L, n=33) according to the median B cell count values. Compared with the high B cell count group, the low B cell count group had a higher proportion of patients with Lugano stage III-IV, elevated LDH, elevated ß2-MG and IPI score 3-5 and increased CRP (P =0.033, 0.000, 0.023, 0.001, 0.033). The peripheral CD3+ and CD4+ cell counts of patients in the low B cell count group were significantly lower than those in the high B cell count group (P =0.010, 0.017). After initial treatment, overall response rate (ORR) and complete remission (CR) rate in high B cell count group were significantly higher than those in low B cell count group (P =0.032, 0.013). The median follow-up time of patients was 23(2-77) months, progression-free survival (PFS) and overall survival (OS) of patients in the high B cell count group were significantly better than those in the low B cell count group (P =0.001, 0.002). Univariate analysis showed that pretreatment low B cell count in the peripheral blood was associated with shortened PFS and OS (HR=4.108, P =0.002; HR=8.218, P =0.006). Multivariate analysis showed that low B cell count was an independent prognostic factor for shortened PFS (HR=3.116, P =0.037). CONCLUSION: Decreased peripheral blood B cell count in newly diagnosed DLBCL patients is associated with high-risk clinical features and may affect the efficacy of immunochemotherapy, which is associated with poor clinical prognosis.
Assuntos
Linfócitos B , Linfoma Difuso de Grandes Células B , Humanos , Linfoma Difuso de Grandes Células B/sangue , Linfoma Difuso de Grandes Células B/diagnóstico , Prognóstico , Estudos Retrospectivos , Contagem de Linfócitos , Masculino , Feminino , Pessoa de Meia-IdadeRESUMO
BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. Sarcopenia is a syndrome characterized by progressive and generalized loss of skeletal muscle mass and strength, which is commonly associated with NAFLD. Adenosine-to-inosine editing, catalysed by adenosine deaminase acting on RNA (ADAR), is an important post-transcriptional modification of genome-encoded RNA transcripts. Three ADAR gene family members, including ADAR1, ADAR2 and ADAR3, have been identified. However, the functional role of ADAR2 in obesity-associated NAFLD and sarcopenia remains unclear. METHODS: ADAR2+/+/GluR-BR/R mice (wild type [WT]) and ADAR2-/-/GluR-BR/R mice (ADAR2 knockout [KO]) were subjected to feeding with standard chow or high-fat diet (HFD) for 20 weeks at the age of 5 weeks. The metabolic parameters, hepatic lipid droplet, grip strength test, rotarod test, muscle weight, fibre cross-sectional area (CSA), fibre types and protein associated with protein degradation were examined. Systemic and local tissues serum amyloid A1 (SAA1) were measured. The effects of SAA1 on C2C12 myotube atrophy were investigated. RESULTS: ADAR2 KO mice fed with HFD exhibited lower body weight (-7.7%, P < 0.05), lower liver tissue weight (-20%, P < 0.05), reduced liver lipid droplets in concert with a decrease in hepatic triglyceride content (-24%, P < 0.001) and liver injury (P < 0.01). ADAR2 KO mice displayed protection against HFD-induced glucose intolerance, insulin resistance and dyslipidaemia. Skeletal muscle mass (P < 0.01), muscle strength (P < 0.05), muscle endurance (P < 0.001) and fibre size (CSA; P < 0.0001) were improved in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. Muscle atrophy-associated transcripts, such as forkhead box protein O1, muscle atrophy F-box/atrogin-1 and muscle RING finger 1/tripartite motif-containing 63, were decreased in ADAR2 KO mice fed with HFD compared with WT mice fed with HFD. ADAR2 deficiency attenuates HFD-induced local liver and skeletal muscle tissue inflammation. ADAR2 deficiency abolished HFD-induced systemic (P < 0.01), hepatic (P < 0.0001) and muscular (P < 0.001) SAA1 levels. C2C12 myotubes treated with recombinant SAA1 displayed a decrease in myotube length (-37%, P < 0.001), diameter (-20%, P < 0.01), number (-39%, P < 0.001) and fusion index (-46%, P < 0.01). Myogenic markers (myosin heavy chain and myogenin) were decreased in SAA1-treated myoblast C2C12 cells. CONCLUSIONS: These results provide novel evidence that ADAR2 deficiency may be important in obesity-associated sarcopenia and NAFLD. Increased SAA1 might be involved as a regulatory factor in developing sarcopenia in NAFLD.
Assuntos
Adenosina Desaminase , Camundongos Knockout , Atrofia Muscular , Hepatopatia Gordurosa não Alcoólica , Proteínas de Ligação a RNA , Proteína Amiloide A Sérica , Animais , Adenosina Desaminase/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Camundongos , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , Atrofia Muscular/metabolismo , Proteína Amiloide A Sérica/metabolismo , Modelos Animais de Doenças , Masculino , Dieta Hiperlipídica , Músculo Esquelético/patologia , Músculo Esquelético/metabolismoRESUMO
A catalytic hairpin self-assembly (CHA) amplification method was developed for CAP detection based on cross-shaped DNA and UiO-66. MOF was used to quench the fluorescent signal of FAM labeled DNA. Cross-shaped DNA with four fluorophore group (FAM) was utilized to enhance the fluorescent intensity. CAP could open hairpin structure of H-apt and induce CHA reaction. The product of CHA hybridized with cross-shaped DNA, resulting its leaving from the surface of UiO-66 and recovery of fluorescent signal. The limit of detection (LOD) was low to 0.87 pM. This method had been successfully applied for the detection of CAP in actual samples. Importantly, the high sensitivity was attributed to the great amplification efficiency of CHA, strong fluorescent intensity of cross-shaped DNA structure and great fluorescent quenched efficiency of UiO-66.