Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 15(10): 2682-2689, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38427025

RESUMO

The growing demand for energy has increased the need for battery storage, with lithium-ion batteries being widely used. Among those, nickel-rich layered lithium transition metal oxides [LiNi1-x-yCoxMnyO2 NCM (1 - x - y > 0.5)] are some of the promising cathode materials due to their high specific capacities and working voltages. In this study, we demonstrate that a thin, simple coating of polyalanine chiral molecules improves the performance of Ni-rich cathodes. The chiral organic coating of the active material enhances the discharge capacity and rate capability. Specifically, NCM811 and NCM622 electrodes coated with chiral molecules exhibit lower voltage hysteresis and better rate performance, with a capacity improvement of >10% at a 4 C discharge rate and an average improvement of 6%. We relate these results to the chirally induced spin selectivity effect that enables us to reduce the resistance of the electrode interface and to reduce dramatically the overpotential needed for the chemical process by aligning the electron spins.

2.
Proc Natl Acad Sci U S A ; 120(32): e2300828120, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37523549

RESUMO

Traditionally, nuclear spin is not considered to affect biological processes. Recently, this has changed as isotopic fractionation that deviates from classical mass dependence was reported both in vitro and in vivo. In these cases, the isotopic effect correlates with the nuclear magnetic spin. Here, we show nuclear spin effects using stable oxygen isotopes (16O, 17O, and 18O) in two separate setups: an artificial dioxygen production system and biological aquaporin channels in cells. We observe that oxygen dynamics in chiral environments (in particular its transport) depend on nuclear spin, suggesting future applications for controlled isotope separation to be used, for instance, in NMR. To demonstrate the mechanism behind our findings, we formulate theoretical models based on a nuclear-spin-enhanced switch between electronic spin states. Accounting for the role of nuclear spin in biology can provide insights into the role of quantum effects in living systems and help inspire the development of future biotechnology solutions.


Assuntos
Fenômenos Biológicos , Oxigênio , Isótopos de Oxigênio/química , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA