Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 32(12): 21532-21552, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859505

RESUMO

Extreme ultraviolet (EUV) photon beam characterization techniques, Hartmann wavefront sensing and single shot ablation imprinting, were compared along the caustic of a tightly focused free-electron laser (FEL) beam at beamline FL24 of FLASH2, the Free-electron LASer in Hamburg at DESY. The transverse coherence of the EUV FEL was determined by a Young's double pinhole experiment and used in a back-propagation algorithm which includes partial coherence to calculate the beam intensity profiles along the caustic from the wavefront measurements. A very good agreement of the profile structure and size is observed for different wavelengths between the back-propagated profiles, an indirect technique, and ablation imprints. As a result, the Hartmann wavefront sensor including its software MrBeam is a very useful, single shot pulse resolved and fast tool for non-invasive determination of focal spot size and shape and also for beam profiles along the caustic.

2.
Opt Express ; 29(7): 10491-10508, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33820183

RESUMO

Self-amplified spontaneous emission (SASE) pulses delivered by free electron lasers (FELs) are inherently fluctuating sources; each pulse varies in energy, duration, arrival time and spectral shape. Therefore, there is strong demand for a full characterization of the properties of SASE radiation, which will facilitate more precise interpretation of the experimental data taken at SASE FELs. In this paper, we present an investigation into the fluctuations of pulse duration, spectral distribution, arrival time and pulse energy of SASE XUV pulses at FLASH, both on a shot-to-shot basis and on average over many pulses. With the aid of simulations, we derived scaling laws for these parameters and disentangled the statistical SASE fluctuations from accelerator-based fluctuations and measurement uncertainties.

3.
Opt Express ; 25(15): 17892-17903, 2017 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28789279

RESUMO

Determining fluctuations in focus properties is essential for many experiments at Self-Amplified-Spontaneous-Emission (SASE) based Free-Electron-Lasers (FELs), in particular for imaging single non-crystalline biological particles. We report on a diffractive imaging technique to fully characterize highly focused, single-shot pulses using an iterative phase retrieval algorithm, and benchmark it against an existing Hartmann wavefront sensor. The results, both theoretical and experimental, demonstrate the effectiveness of this technique to provide a comprehensive and convenient shot-to-shot measurement of focused-pulse wave fields and source-point positional variations without the need for manipulative optics between the focus and the detector.

4.
Sci Rep ; 6: 24791, 2016 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-27109208

RESUMO

The advent of newer, brighter, and more coherent X-ray sources, such as X-ray Free-Electron Lasers (XFELs), represents a tremendous growth in the potential to apply coherent X-rays to determine the structure of materials from the micron-scale down to the Angstrom-scale. There is a significant need for a multi-physics simulation framework to perform source-to-detector simulations for a single particle imaging experiment, including (i) the multidimensional simulation of the X-ray source; (ii) simulation of the wave-optics propagation of the coherent XFEL beams; (iii) atomistic modelling of photon-material interactions; (iv) simulation of the time-dependent diffraction process, including incoherent scattering; (v) assembling noisy and incomplete diffraction intensities into a three-dimensional data set using the Expansion-Maximisation-Compression (EMC) algorithm and (vi) phase retrieval to obtain structural information. We demonstrate the framework by simulating a single-particle experiment for a nitrogenase iron protein using parameters of the SPB/SFX instrument of the European XFEL. This exercise demonstrably yields interpretable consequences for structure determination that are crucial yet currently unavailable for experiment design.


Assuntos
Simulação por Computador , Cristalografia por Raios X/instrumentação , Lasers , Modelos Teóricos , Oxirredutases/química , Cristalografia por Raios X/métodos , Elétrons , Imageamento Tridimensional , Fótons , Conformação Proteica , Difração de Raios X
5.
Opt Express ; 17(10): 8220-8, 2009 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-19434154

RESUMO

Femtosecond vacuum ultraviolet (VUV) radiation provided by the free-electron laser FLASH was used for digital in-line holographic microscopy and applied to image particles, diatoms and critical point dried fibroblast cells. To realize the classical in-line Gabor geometry, a 1 microm pinhole was used as spatial filter to generate a divergent light cone with excellent pointing stability. At a fundamental wavelength of 8 nm test objects such as particles and diatoms were imaged at a spatial resolution of 620 nm. In order to demonstrate the applicability to biologically relevant systems, critical point dried rat embryonic fibroblast cells were for the first time imaged with free-electron laser radiation.


Assuntos
Elétrons , Holografia/métodos , Lasers , Raios Ultravioleta , Animais , Diatomáceas/citologia , Ratos , Dióxido de Silício , Fatores de Tempo , Vácuo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA