Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
NMR Biomed ; 36(1): e4826, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36057925

RESUMO

Proton resonance frequency shift (PRFS) is currently the gold standard method for magnetic resonance thermometry. However, the linearity between the temperature-dependent phase accumulation and the static magnetic field B0 confines its use to rather high-field scanners. Applications such as thermal therapies could naturally benefit from lower field MRI settings through leveraging increased accessibility, a lower physical and economical footprint, and further consideration of the technical challenges associated with the integration of heating systems into conventional clinical scanners. T 1 -based thermometry has been proposed as an alternative to the gold standard; however, because of longer acquisition times, it has found clinical use solely with adipose tissue where PRFS fails. At low field, the enhanced T 1 dispersion, combined with reduced relaxation times, make T 1 mapping an appealing candidate. Here, an interleaved Look-Locker-based T 1 mapping sequence was proposed for temperature quantification at 0.1 T. A variable averaging scheme was introduced, to maximize the signal-to-noise ratio throughout T 1 recovery. In calibrated samples, an average T 1 accuracy of 85% ± 4% was achieved in 10 min, compared with the 77% ± 7% obtained using a standard averaging scheme. Temperature maps between 29.0 and 41.7°C were eventually reconstructed, with a precision of 3.0 ± 1.1°C and an accuracy of 1.5 ± 1.0°C. Accounting for longer thermal treatments and less strict temperature constraints, applications such as MR-guided mild hyperthermia treatments at low field could be envisioned.


Assuntos
Campos Magnéticos
2.
Sci Adv ; 8(36): eabo5739, 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36083901

RESUMO

Most commonly used at clinical magnetic fields (1.5 to 3 T), magnetic resonance elastography (MRE) captures mechanical wave propagation to reconstruct the mechanical properties of soft tissue with MRI. However, in terms of noninvasively assessing disease progression in a broad range of organs (e.g., liver, breast, skeletal muscle, and brain), its accessibility is limited and its robustness is challenged when magnetic susceptibility differences are encountered. Low-field MRE offers an opportunity to overcome these issues, and yet it has never been demonstrated in vivo in humans with magnetic fields <1.5 T mainly because of the long acquisition times required to achieve a sufficient signal-to-noise ratio. Here, we describe a method to accelerate 3D motion-sensitized MR scans at 0.1 T using only 10% k-space sampling combined with a high-performance detector and an efficient encoding acquisition strategy. Its application is demonstrated in vivo in the human forearm for a single motion-encoding direction in less than 1 min.

3.
Front Bioeng Biotechnol ; 9: 676003, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34178965

RESUMO

Background and context: Low back pain is a dramatic burden worldwide. Discography studies have shown that 39% of chronic low back pain patients suffer from discogenic pain due to a radial fissure of intervertebral disc. This can have major implications in clinical therapeutic choices. The use of discography is restricted because of its invasiveness and interest in it remains low as it represents a static condition of the disc morphology. Magnetic Resonance Imaging (MRI) appears to be less invasive but does not describe the biomechanical dynamic behavior of the fissure. Purpose: We aimed to seek a quantitative MRI protocol combined with ex vivo sagittal loading to analyze the morphological and biomechanical changes of the intervertebral disc structure and stress distribution. Study design: Proof of concept. Methods: We designed a proof-of-concept ovine study including 3 different 3.0 T-MRI sequences (T2-weighted, T1 and T2 mapping). We analyzed 3 different mechanical states (neutral, flexion and extension) on a fresh ovine spine specimen to characterize an intervertebral disc before and after puncturing the anterior part of the annulus fibrosus. We used a mark tracking method to calculate the bending angles and the axial displacements of the discal structures. In parallel, we created a finite element model to calculate the variation of the axial stress and the maximal intensity shear stress, extrapolated from our experimental boundary conditions. Results: Thanks to an original combination of specific nuclear relaxation time quantifications (T1, T2) of the discal tissue, we characterized the nucleus movement/deformation into the fissure according to the synchronous mechanical load. This revealed a link between disc abnormality and spine segment range of motion capability. Our finite element model highlighted significant variations within the stress distribution between intact and damaged disc. Conclusion: Quantitative MRI appears to provide a new opportunity to characterize intra-discal structural morphology, lesions and stress changes under the influence of mechanical load. This preliminary work could have substantial implications for non-invasive disc exploration and could help to validate novel therapies for disc treatment.

4.
Materials (Basel) ; 10(10)2017 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-29019958

RESUMO

This paper presents an extensive analysis of the operating principles, theoretical background, advantages and limitations of laser-based lighting systems. In the first part of the paper we discuss the main advantages and issues of laser-based lighting, and present a comparison with conventional LED-lighting technology. In the second part of the paper, we present original experimental data on the stability and reliability of phosphor layers for laser lighting, based on high light-intensity and high-temperature degradation tests. In the third part of the paper (for the first time) we present a detailed comparison between three different solutions for laser lighting, based on (i) transmissive phosphor layers; (ii) a reflective/angled phosphor layer; and (iii) a parabolic reflector, by discussing the advantages and drawbacks of each approach. The results presented within this paper can be used as a guideline for the development of advanced lighting systems based on laser diodes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA