RESUMO
Glutamate excitotoxicity has long been related to Alzheimer's disease (AD) pathophysiology, and it has been shown to affect the major AD-related hallmarks, amyloid-ß peptide (Aß) accumulation and tau phosphorylation (p-tau). We investigated whether oral administration of monosodium glutamate (MSG) has effects in a murine model of AD, the double transgenic mice APP/PS1. We found that AD pathogenic factors appear earlier in APP/PS1 when supplemented with MSG, while wildtype mice were essentially not affected. Aß and p-tau levels were increased in the hippocampus in young APP/PS1 animals upon MSG administration. This was correlated with increased Cdk5-p25 levels. Furthermore, in these mice, we observed a decrease in the AMPA receptor subunit GluA1 and they had impaired long-term potentiation. The Hebb-Williams Maze revealed that they had memory deficits. We show here for the first time that oral MSG supplementation can accelerate AD-like pathophysiology in a mouse model of AD.