Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Chem Ecol ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722476

RESUMO

The zoophytophagous mirid predator Nesidiocoris tenuis and the ectoparasitoid Stenomesius japonicus are important biological control agents for several agricultural pests including the invasive leafminer, Phthorimaea absoluta, a destructive pest of Solanaceous crops especially tomato in sub-Saharan Africa. However, little is known about how feeding by N. tenuis can influence the tritrophic interactions in the tomato plant. Here, we tested the hypothesis that N. tenuis phytophagy would influence the tritrophic olfactory interactions between the host plant tomato and pest, predator, and parasitoid. In olfactometer assays, P. absoluta females and N. tenuis adults were both attracted to constitutive volatiles released by the tomato plant. Whereas females of P. absoluta avoided volatiles released by N. tenuis-infested plants, S. japonicus females and N. tenuis adults were attracted to the induced volatiles. In coupled gas chromatography-electroantennographic detection (GC-EAD) recordings of intact and N. tenuis-infested plant volatiles, antennae of P. absoluta and S. japonicus females both detected eight components, whereas N. tenuis adults detected seven components which were identified by GC-mass spectrometry (GC-MS) as terpenes and green leaf volatiles (GLVs). Dose-response olfactometer bioassays revealed that the responses of P. absoluta, N. tenuis, and S. japonicus varied with the composition and concentration of blends and individual compounds tested from N tenuis-induced volatiles. Females of P. absoluta showed no preference for an eight-component blend formulated from the individual repellents including hexanal, (Z)-3-hexenyl butanoate, and δ-elemene identified in the volatiles. On the other hand, S. japonicus females were attracted to an eight-component blend including the attractants (E)-2-hexenal, (Z)-3-hexenol, methyl salicylate, ß-phellandrene, and (E)-caryophyllene. Likewise, N. tenuis adults were attracted to a seven-component blend including the attractants ß-phellandrene, δ-elemene, and (E)-caryophyllene identified in the volatiles. Our findings suggest that there is potential for the use of terpenes and GLVs to manage the insects in the tritrophic interaction.

2.
Heliyon ; 10(9): e30068, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707327

RESUMO

Before the introduction of Bactrocera dorsalis (Hendel) to sub-Saharan Africa, Ceratitis cosyra (Walker) was economically the most important pest in mango farming. Its native natural enemy, the solitary parasitoid Psyttalia cosyrae (Wilkinson), played a crucial role in C. cosyra bio-control, later complemented by the exotic parasitoids Diachasmimorpha longicaudata (Ashmead) and Fopius arisanus (Sonan) among Integrated Pest Management (IPM) systems. To understand the in situ mango-C. cosyra-parasitoid tritrophic interaction, we assessed the responses of the fruit fly and the three parasitoids to headspace volatiles from various mango conditions. These conditions included non-infested mature unripe mangoes, C. cosyra-infested mangoes, 7th- and 9th-day post-infestation mangoes, non-infested ripe mangoes of three varieties (Kent, Apple, and Haden), and clean air (blank). We also compared the fruit fly's performance in the mango varieties and identified the chemical profiles of mango headspace volatiles. Ceratitis cosyra was attracted to both infested and non-infested mangoes (66-84 % of responsive C. cosyra) and showed superior performance in Kent mango (72.1 % of the 287 puparia recovered) compared to Apple and Haden varieties. Fopius arisanus displayed a stronger attraction to the volatiles of C. cosyra-infested mangoes (68-70 %), while P. cosyrae and D. longicaudata were significantly attracted to the 9th-day post-infestation mangoes (68-78 %) compared to non-infested mango volatiles. Gas chromatography-mass spectroscopy showed substantial quantitative and qualitative differences in volatile profiles among mango treatments. Esters predominated in non-infested ripe, 7th- and 9th-day post-infestation mangoes, while monoterpenes and sesquiterpenes were most dominant in the other treatments. The in situ experiments underscored varying preferences of the species for mango headspace volatiles and their subsequent treatments. These results provide valuable insights for further exploration, specifically in identifying the key volatiles responsible for species responses, to facilitate the development of applicable selective semiochemicals for managing species of African fruit fly.

3.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500045

RESUMO

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Assuntos
Microbiota , Resiliência Psicológica , Solo/química , Zea mays , Fungos/genética , Agricultura/métodos , Bactérias/genética , Microbiologia do Solo
4.
Sci Rep ; 14(1): 5045, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424443

RESUMO

The future of the food system on the planet is increasingly facing uncertainties that are attributable to population growth and a surge in demand for nutritious food. Traditional agricultural practices are poised to place strain on production, as well as natural resources and ecosystem services provided, particularly under a changing climate. Given their remarkable attributes, including a low environmental footprint, high food conversion ratio, rapid growth and nutritional values, edible insects can play a vital role in the global food system. Nonetheless, substantial knowledge gaps persist regarding their diversity, global distribution, and shared characteristics across regions, potentially impeding effective scaling and access to edible insects. Therefore, we compiled and analysed the fragmented database on edible insects and identified potential drivers that elucidate insect consumption, globally, focusing on promoting a sustainable food system. We collated data from various sources, including the literature for a list of edible insect species, the Global Biodiversity Information Facility and iNaturalist for the geographical presence of edible insects, the Copernicus Land Service library for Global Land Cover, and FAOSTAT for population, income, and nutritional security parameters. Subsequently, we performed a series of analytics at the country, regional and continental levels. Our study identifies 2205 insect species, consumed across 128 countries globally. Among continents, Asia has the highest number of edible insects (932 species), followed by North America (mainly Mexico) and Africa. The countries with the highest consumption of insects are Mexico (450 species), Thailand (272 species), India (262 species), DRC (255 species), China (235 species), Brazil (140 species), Japan (123 species), and Cameroon (100 species). Our study also revealed some common and specific practices related to edible insect access and utilisation among countries and regions. Although insect consumption is often rooted in cultural practices, it exhibits correlations with land cover, the geographical presence of potentially edible insects, the size of a country's population, and income levels. The practice of eating insects is linked to the culture of people in Africa, Asia, and Latin America, while increased consciousness and the need for food sustainability are driving most of the European countries to evaluate eating insects. Therefore, edible insects are becoming an increasingly significant part of the future of planetary food systems. Therefore, more proactive efforts are required to promote them for their effective contribution to achieving sustainable food production.


Assuntos
Insetos Comestíveis , Animais , Humanos , Ecossistema , Insetos , Alérgenos , Camarões , Tailândia
5.
Front Plant Sci ; 14: 1014865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37035056

RESUMO

The tomato leafminer, Tuta absoluta is a destructive invasive pest of cultivated tomato and other Solanaceae plants, with yield losses of 80-100%. Mirid predators are key natural enemies of T. absoluta, but they also feed on host plants in the absence of their prey. Management of T. absoluta is a challenge due to its high biotic potential, resistance to many insecticides and the absence of sufficiently adapted auxiliary fauna in its new dispersion zones. Olfaction plays an important role in the tritrophic interaction between tomato, its herbivore pest T. absoluta and its mirid predators, which can be influenced by non-host plant odors. However, how non-host odours shape this interaction is poorly understood. Previously, we had demonstrated belowground crop protection properties of certain Asteraceae plants against the root-knot nematode Meloidogyne incognita, pest of tomato and other Solanaceae plants. Additionally, Asteraceae plants impact negatively on feeding behavior of above-ground pests of Solanaceae plants, including the greenhouse whitefly (Trialeurodes vaporariorum) and green peach aphid (Myzus persicae). Here, we tested the hypothesis that foliar volatiles from some of these non-host Asteraceae plants can influence the tomato-T. absoluta-mirid predator tritrophic interaction. In olfactometer assays, T. absoluta females were attracted to volatiles of the Solanaceae host plants tomato and giant nightshade but avoided volatiles of the Asteraceae plants, blackjack and marigold, and the positive control, wild tomato, when tested alone or in combination with the host plants. Coupled gas chromatography-mass spectrometry analysis showed that host and non-host plants varied in their emission of volatiles, mainly monoterpenes and sesquiterpenes. Random forest analysis combined with behavioral assays identified monoterpenes as the host plant attractive blend to T. absoluta and its mirid predator, with sesquiterpenes identified as the non-host plant repellent blend against T. absoluta. Contrastingly, the mirid predator was indifferent to the non-host plant repellent sesquiterpenes. Our findings indicate that terpenes influence the tomato-T. absoluta-mirid predator tritrophic interaction. Further, our results emphasize the importance of studying crop protection from a holistic approach to identify companion crops that serve multi-functional roles.

6.
RSC Adv ; 9(58): 34039-34049, 2019 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-35528904

RESUMO

Eucalyptol is the natural cyclic ether which constitutes the bulk of terpenoids found in essential oils of Eucalyptus spp. and is used in aromatherapy for treatment of migraine, sinusitis, asthma and stress. It acts by inhibiting arachidonic acid metabolism and cytokine production. Chemical instability and volatility of eucalyptol restrict its therapeutic application and necessitate the need to develop an appropriate delivery system to achieve extended release and enhance its bioactivity. However, the synthesis method of the delivery system must be suitable to prevent loss or inactivation of the drug during processing. In this study, supercritical carbon dioxide (scCO2) was explored as an alternative solvent for encapsulation and co-precipitation of eucalyptol with polyethylene glycol (PEG) and/or polycaprolactone (PCL) using the particles from gas-saturated solution (PGSS) process. Polymers and eucalyptol were pre-mixed and then processed in a PGSS autoclave at 45 °C and 80 bar for 1 h. The mixture in scCO2 was micronized and characterized. The presence of eucalyptol in the precipitated particles was confirmed by infrared spectroscopy, gas chromatography and mass spectrometry. The weight ratios of PEG-PCL blends significantly influenced loading capacity and encapsulation efficiency with 77% of eucalyptol encapsulated in a 4 : 1 composite blend of PEG-PCL. The particle size distribution of the PGSS-micronized particles ranged from 30 to 260 µm. ScCO2 assisted microencapsulation in PEG and PCL reduced loss of the volatile drug during a two-hour vaporization study and addition of PCL extended the mean release time in simulated physiological fluids. Free radical scavenging and lipoxygenase inhibitory activities of eucalyptol formulated in the PGSS-micronized particles was sustained. Findings from this study showed that the scCO2-assisted micronization can be used for encapsulation of volatile drugs in polymeric microparticles without affecting bioactivity of the drug.

7.
J Insect Sci ; 14: 53, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-25373200

RESUMO

The African termiteraiding ant Pachycondyla analis Latreille (Hymenoptera: Formicidae) organizes group raids on termites of the subfamily Macrotermitinae. Termites and ants occupy and share similar habitats, resulting in a co-evolutionary arms race between termites as prey and ants as predators. The present study explored whether P. analis uses semio- chemical signaling cues to detect potential termite prey prior to and during raids. Ants' responses to odors emitted from termites alone, termite gallery soil, and termites inside their galleries were tested using Y-tube olfactometer assays. The results showed that P. analis detected odors of termites and those of their galleries, and odors from termites inside their galleries were more attractive to both minor and major ant workers than odors from termites alone. The composition of these odor sources was identified using gas chromatography-mass spectrometry analysis. While the odors from termite gallery soils were compositionally richer (containing 13 compounds rather than nine from termites alone), those from the termites alone were quantitatively richer, releasing about six times more odors than gallery soil. Most of the compounds in the odor profiles were identified as hydrocarbons. Naphthalene, previously identified as an insect repellent, was also identified as a component of the odors from the gallery soil. These results demonstrate that odors play an important role in prey detection by P. analis.


Assuntos
Formigas/fisiologia , Isópteros/fisiologia , Odorantes , Comportamento Predatório , Animais , Bioensaio , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA