Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 445: 130572, 2023 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055978

RESUMO

In a Co-HAP/PMS system, catalytic degradation process of RhB was accompanied by the gradual leaching of cobalt ion. The results of additional experiments showed that leached cobalt ion indeed contributed to active PMS for RhB degradation, which was not addressed in the previous study. The finding of the contribution from leached cobalt ion to PMS activation was reported due to the valuable comments of Zuo et al., what will be concerned in the future work. Importantly, Co-HAP still showed a significant contribution to PMS activation for RhB degradation at the initial stage. Fortunately, the release of Co2+ from Co-HAP was slow, the secondary pollution could not be addressed due to the slightly release of Co2+ ion that the Co2+ concentration is lower than the standard of the discharge wastewater. Furthermore, the mechanism of non-radical reaction in the Co-HAP/PMS system was reported to confirm the heterogeneous catalysis of a Co-HAP/PMS system.

2.
Sci Total Environ ; 741: 140292, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32610231

RESUMO

Contamination caused by radionuclides such as uranium (U) has become an increasingly serious environmental problem. The unique and diverse features of uranyl ions (U(VI)) remarkably dominate their mobility and environmental impact on the ecosystem. Understanding the sorption behavior and fate of aqueous U(VI) ions on natural mineral(s) such as quartz sand (a typical type of crystalline silica (SiO2)) particles is essential for unraveling many environmental issues. In this work, the sorption of uranyl ions by various particle size quartz sands under different reaction conditions was thoroughly investigated. The quartz sand with an average particle size of 3.588 µm exhibited an excellent sorption performance for the removal of aqueous U(VI) ions at pH 5.0. The sorption rate increased as the dosage of sorbent increased. The sorption rate descends with the rise of the initial U(VI) concentration while its sorption amount is reversed. The elevation of temperature impeded the U(VI) sorption. Humic acid (a typical natural organic matter) showed significant impacts on U(VI) removal. Ions of Ca2+, CO32- and K+ remarkably inhibited the U(VI) sorption, while PO43- ions significantly promoted the U(VI) sorption. The pseudo second-order kinetic model could fit well with the experimental sorption data. The U(VI) sorption is mainly chemisorption and it is an exothermic process. After sorption, the surface of used quartz sand became much smooth and XPS signals of U(VI) were detected, evidencing the success of the removal of aqueous U(VI). The outcomes of this study highlighted both solution pH and natural organic matters played critical roles on U(VI) removal by sand particles. This study further enhances our comprehension from the molecular-scale process manipulating U(VI) sorption behavior at the mineral-aqueous interface.

3.
J Hazard Mater ; 394: 122550, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32299040

RESUMO

The exploration of emergency materials with ultra-fast adsorption rate and great adsorption capability of released U(VI) ions is essentially urgent. The present work successfully fabricated bundle-like hydroxyapatite (B-HAP) microstructures which composed of numerous nanorods by employing a facile and green method. The B-HAP was applied to treat the U(VI) containing wastewater. The abatement of U(VI) by B-HAP was very rapid and the saturated adsorption capacity was superior; over 96.7 % of U(VI) was abated within 5 min, and the maximum adsorption capacity was as high as to 1305 mg/g, signifying the feasibility and effectiveness of this B-HAP in the treatment of uranium-contaminated wastewater due to nuclear accidents. It is worthy to note that other ions in solution exhibited relatively low interference on its performance, indicating that B-HAP has great application potential to capture U(VI) from radioactive-contaminated wastewater as well. The U(VI) removal mechanism by B-HAP was confirmed with results from XRD, FT-IR and XPS. Chernikovite [H2(UO2)2(PO4)2·8H2O] was newly formed after U(VI) abatement by B-HAP. Economic assessment suggested B-HAP and its application on U(VI) abatement were cost-effective. With characteristics of high adsorption rate, large capacity, and strong antijamming ability, B-HAP has great application potential as an emergency treatment material for nuclear accidents.

4.
Int J Biol Macromol ; 149: 127-139, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-31978476

RESUMO

Uranium (U(VI)) is radioactive and the primary raw material in the production of nuclear energy. Hence the research associated with uranium removal gained a lot of importance because to reduce the threat of uranium contamination to ecology and its environment surroundings. Thus, economically as well as environmentally friendly sorbents with a good sorption capacity have to be acquired for the removal of U(VI) pollutants from the aqueous and polluted sea samples. In this study magnetic- Momordica charantia leaf powder impregnated into chitosan (m-MCLPICS) was prepared through the impregnation method. After preparation the adsorbent undergone through various characterizations such as BET, XRD, FTIR, SEM with elemental mapping, and VSM analysis. The specific surface area (93.12 m2/g), pore size (0.212 cm3/g) and pore volume (15.35 nm) of m-MCLPICS was obtained from the BET analysis. A pH value of 5 and 0.5 g of adsorbent dose were selected as an optimum values for U(VI) removal. Kinetic data follows the pseudo-second-order model, and the equilibrium data fitted well with the Langmuir isotherm model. ΔG° (-1.6999, -2.4994, -3.5476 and -4.5147 kJ/mol), ΔH0 (25.1 kJ/mol) and ΔS0 (0.089 kJ/mol K) indicates that the U(VI) sorption process is feasible, spontaneous and endothermic.


Assuntos
Quitosana/química , Momordica charantia/química , Folhas de Planta/química , Urânio/química , Poluentes Radioativos da Água/química , Purificação da Água , Pós , Águas Residuárias/química
5.
Int J Biol Macromol ; 148: 887-897, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31945442

RESUMO

In this study m-AHLPICS (magnetic Arachis hypogaea leaves powder impregnated into chitosan) was prepared and utilized as an adsorbent to remove U(VI) from aqueous and real polluted wastewater samples. m-AHLPICS was characterized by using the BET, XRD, FTIR, SEM with elemental mapping and magnetization measurements. Different experimental effects such as pH, dose, contact time, and temperature were considered broadly. Chitosan modified magnetic leaf powder (m-AHLPICS) exhibits an excellent adsorption capacity (232.4 ± 5.59 mg/g) towards U(VI) ions at pH 5. Different kinetic models such as pseudo-first-order, and pseudo-second-order models were used to know the kinetic data. Langmuir, Freundlich and D-R isotherms were implemented to know the adsorption behavior. Isothermal information fitted well with Langmuir isotherm. Kinetic data followed by the pseudo-second-order kinetics (with high R2 values, i.e., 0.9954, 0.9985 and 0.9971) and the thermodynamic data demonstrate that U(VI) removal using m-AHLPICS was feasible, and endothermic in nature.


Assuntos
Arachis/química , Quitosana/química , Folhas de Planta/química , Urânio/química , Poluentes Radioativos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Pós , Análise Espectral , Temperatura , Termodinâmica , Águas Residuárias , Poluição da Água , Purificação da Água
6.
Int J Biol Macromol ; 146: 1100-1110, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31682857

RESUMO

A novel, eco-friendly aminated chitosan Schiff's base (ACSSB@ZnO) was developed and utilized to remove MO from aqueous environment. The impact of different significant parameters, for example, pH (3-11), adsorbent dose (0.1-0.6 g), contact time (0-120 min), and temperature (303-323 K) have been explored by batch process. Kinetic data was illustrated by pseudo-second-order model and the isotherms fitted well with Langmuir isotherm model. The highest sorption capacity of ACSSB@ZnO was observed to be 111.11 mg/g at 323 K. Positive enthalpy and entropy values demonstrated that the MO adsorption procedure was an endothermic. Negative Gibbs free energy values implied the spontaneous nature of the adsorption system. Moreover, reusability experiments were studied and it can be regenerated by using NaOH as effluent.


Assuntos
Compostos Azo/isolamento & purificação , Quitosana/síntese química , Corantes/isolamento & purificação , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Aminação , Animais , Quitosana/química , Humanos , Concentração de Íons de Hidrogênio , Cinética , Células MCF-7 , Masculino , Camundongos , Espectroscopia de Prótons por Ressonância Magnética , Bases de Schiff/química , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície , Fatores de Tempo , Difração de Raios X , Óxido de Zinco/química
7.
J Hazard Mater ; 384: 121447, 2020 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-31653407

RESUMO

Hydroxyapatite (HAP) is a promising supporter of catalyst due to its potential in immobilizing metals stably. HAP supported cobalt-based catalyst (Co-HAP) was synthesized via a facile ion exchange-calcination method to reduce the Co leaching. The synthesized Co-HAP was characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscope (TEM), Brunauer-Emmett-Teller (BET) analysis and X-ray photoelectron spectroscopy (XPS). Cobalt ions were incorporated into HAP structure and Co3O4 on HAP surface. Co-HAP showed satisfactory performance in peroxymonosulfate (PMS) activation for eliminating Rhodamine B (RhB) in aqueous solution. Co-HAP even revealed a better activity than that of CoFe2O4. •OH, SO4•- and 1O2 were all involved in RhB degradation and 1O2 played a leading role. High content of surface oxygen groups could be found on Co-HAP after RhB degradation, which might be resulted from the high amounts of hydroxyl groups. The presence of hydroxyl groups performed the co-catalytic activity of PMS activation in Co-HAP/PMS system.

8.
Int J Biol Macromol ; 136: 177-188, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31173826

RESUMO

It is well-known that heavy metals are non-biodegradable and have been showing remarkable impacts on the environment, public health and economics. Because of high toxic tendency, lead (Pb), is one of the foremost considerable hazardous metal with high environmental impacts. Chitosan is a polysaccharide, and can be utilized in wastewater treatment because of its good sorption ability. Amino and hydroxyl groups (C-3 position) on chitosan can serve as electrostatic interaction and complexation sites for metal cations. Chemical crosslinking can effectively enhance the stability of chitosan in acidic media. Hence a novel, cost-effective and eco-friendly ZnO incorporated into aminated chitosan Schiff's base (ACSSB@ZnO) has been synthesized, characterized (BET, XRD, FTIR, SEM, TEM and 1H NMR), and utilized as an adsorbent for the removal of Pb(II) ions from the aqueous environment. The various operating parameters, such as pH (2-8), agitation speed (30-180), adsorbent dose (0.1-0.8 g), contact time (0-140 min), metal ion concentration and temperature (303-323 K) were investigated. The maximum sorption capacity of Pb(II) onto ACSSB@ZnO was found to be 55.55 mg/g. The equilibrium, and kinetic studies suggested that the adsorption process followed the Langmuir isotherm and Pseudo-Second-Order model. Thermodynamic data showed that the sorption process was feasible, spontaneous, and endothermic.


Assuntos
Quitosana/química , Chumbo/química , Chumbo/isolamento & purificação , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Bases de Schiff/química , Eletricidade Estática , Temperatura , Óxido de Zinco/química
9.
Int J Biol Macromol ; 117: 1305-1313, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29852227

RESUMO

Lead is one of the highly toxic metals reaching the water bodies from industries and discarded domestic wastes. Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials for the removal of metal ions. The obtained ECCSB@Fe3O4 was characterized by XRD, FTIR, SEM, TEM and VSM analysis. The effect of solution pH, adsorbent dosage, contact time, initial metal ion concentration and temperature effect was studied. The results of the batch sorption kinetic experiments were substituted into the pseudo-first order, pseudo-second order and intraparticle diffusion models. The R2 and SSE results show that pseudo-second order equation describes the sorption process very well. Adsorption process revealed that the initial uptake of Pb(II) was rapid and equilibrium was achieved within 105 min. Langmuir and Freundlich adsorption isotherm models were applied to represent adsorption isotherm data. The equilibrium data were well fitted by the Langmuir isotherm model by revealing the maximum sorption capacity value 86.20 mg/g of ECCSB@Fe3O4. Different thermodynamic parameters, namely, changes in standard Gibbs energy, enthalpy, and entropy, were also evaluated from the temperature dependence, and the results suggest that the adsorption reaction is spontaneous and endothermic in nature.


Assuntos
Quitosana/química , Epicloroidrina/química , Compostos Férricos/química , Íons/química , Chumbo/química , Bases de Schiff/química , Poluentes Químicos da Água/química , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Temperatura , Termodinâmica , Purificação da Água , Difração de Raios X
10.
Int J Biol Macromol ; 105(Pt 1): 422-430, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28711619

RESUMO

Chitosan and its derivatives can be used to modify magnetic materials to promote the adsorption properties of the magnetic materials for the removal of meal ions. In this study a novel CSB@Fe3O4 was prepared, characterized by XRD, FTIR, SEM, TEM, and VSM analysis and utilized as an adsorbent material for the removal of Pb(II) ions from aqueous solution. Batch studies were performed to evaluate the influences of various experimental parameters like pH, adsorbent dosage, contact time, initial concentration, and the effect of temperature. Optimum conditions for Pb(II) removal were found to be pH 5, adsorbent dosage 0.5g and equilibrium time of 105min. The pseudo-first-order, pseudo-second-order and intraparticle diffusion models were used to analyze kinetic data. The data fit well with the second-order kinetic model. The equilibrium data were analyzed using the Langmuir, and Freundlich isotherm models. The best interpretation for the equilibrium data was given by Langmuir isotherm, and the maximum adsorption capacity was found to be 83.33mg/g for CSB@Fe3O4. The calculated thermodynamic parameters ΔG°(-9.728, -9.034 and -7.883kJ/mol for 303, 313, and 323K), ΔH° (20.39kJ/mol) and ΔS° (0.0947J/molK) showed that the adsorption of Pb(II) ions were feasible, spontaneous and endothermic in nature.


Assuntos
Quitosana/química , Óxido Ferroso-Férrico/química , Chumbo/química , Chumbo/isolamento & purificação , Purificação da Água/métodos , Água/química , Adsorção , Química Verde , Concentração de Íons de Hidrogênio , Cinética , Bases de Schiff/química , Temperatura , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação
11.
Int J Phytoremediation ; 19(5): 431-438, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-27739901

RESUMO

The feasibility for the removal of Acid Blue25 (AB25) by Bengal gram fruit shell (BGFS), an agricultural by-product, has been investigated as an alternative for high-cost adsorbents. The impact of various experimental parameters such as dose, different dye concentration, solution pH, and temperature on the removal of Acid Blue25 (AB25) has been studied under the batch mode of operation. pH is a significant impact on the sorption of AB25 onto BGFS. The maximum removal of AB25 was achieved at a pH of 2 (83.84%). The optimum dose of biosorbent was selected as 200 mg for the removal of AB25 onto BGFS. Kinetic studies reveal that equilibrium reached within 180 minutes. Biosorption kinetics has been described by Lagergren equation and biosorption isotherms by classical Langmuir and Freundlich models. Equilibrium data were found to fit well with the Langmuir and Freundlich models, and the maximum monolayer biosorption capacity was 29.41 mg g-1 of AB25 onto BGFS. The kinetic studies indicated that the pseudo-second-order (PSO) model fitted the experimental data well. In addition, thermodynamic parameters have been calculated. The biosorption process was spontaneous and exothermic in nature with negative values of ΔG° (-1.6031 to -0.1089 kJ mol-1) and ΔH° (-16.7920 kJ mol-1). The negative ΔG° indicates the feasibility of physical biosorption process. The results indicate that BGFS could be used as an eco-friendly and cost-effective biosorbent for the removal of AB25 from aqueous solution.


Assuntos
Antraquinonas/metabolismo , Cicer/metabolismo , Corantes/metabolismo , Poluentes Químicos da Água/metabolismo , Adsorção , Biodegradação Ambiental , Biomassa , Frutas/química
12.
Colloids Surf B Biointerfaces ; 114: 75-81, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24176885

RESUMO

Solanum melongena leaves are relatively galore and used as inexpensive material. This paper presents the characterization and evaluation of potential of S. melongena leaf powder (SMLP) for removal of Pb(II) from aqueous solution as a function of pH, biomass dosage, initial metal ion concentration, contact time and temperature. Experimental data were analyzed in terms of three kinetic models such as the pseudo-first-order, pseudo-second-order and intraparticle diffusion models and the results showed that the biosorption processes of Pb(II) followed well pseudo-second-order kinetics. Langmuir and Freundlich isotherm models were applied to describe the biosorption process. Langmuir isotherm described the equilibrium data very well, with a maximum monolayer sorption capacity of 71.42 mg/g for Pb(II) ions at 323 K. The biosorption process was spontaneous and endothermic in nature with negative ΔG° (-8.746, -8.509 and -7.983 kJ/mol) and positive value for ΔH° (3.698 kJ/mol).


Assuntos
Agricultura , Chumbo/isolamento & purificação , Folhas de Planta/química , Solanum melongena/química , Resíduos , Poluentes Químicos da Água/economia , Poluentes Químicos da Água/isolamento & purificação , Adsorção , Biodegradação Ambiental , Custos e Análise de Custo , Concentração de Íons de Hidrogênio , Troca Iônica , Íons , Cinética , Microscopia Eletrônica de Varredura , Modelos Químicos , Pós , Soluções , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Fatores de Tempo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA