Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; : e2401333, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38602227

RESUMO

Amidst these growing sustainability concerns, producing NH4 + via electrochemical NO3 - reduction reaction (NO3RR) emerges as a promising alternative to the conventional Haber-Bosch process. In a pioneering approach, this study introduces Ru incorporation into Co3O4 lattices at the nanoscale and further couples it with electroreduction conditioning (ERC) treatment as a strategy to enhance metal oxide reducibility and induce oxygen vacancies, advancing NH4 + production from NO3RR. Here, supported by a suite of ex situ and in situ characterization measurements, the findings reveal that Ru enrichment promotes Co species reduction and oxygen vacancy formation. Further, as evidenced by the theoretical calculations, Ru integration lowers the energy barrier for oxygen vacancy formation, thereby facilitating a more energy-efficient NO3RR-to-NH4 + pathway. Optimal catalytic activity is realized with a Ru loading of 10 at.% (named 10Ru/Co3O4), achieving a high NH4 + production rate (98 nmol s-1 cm-2), selectivity (97.5%) and current density (≈100 mA cm-2) at -1.0 V vs RHE. The findings not only provide insights into defect engineering via the incorporation of secondary sites but also lay the groundwork for innovative catalyst design aimed at improving NH4 + yield from NO3RR. This research contributes to the ongoing efforts to develop sustainable electrochemical processes for nitrogen cycle management.

2.
Adv Mater ; : e2401288, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38558119

RESUMO

Designing electrocatalysts with high activity and durability for multistep reduction and oxidation reactions is challenging. High-entropy alloys (HEAs) are intriguing due to their tunable geometric and electronic structure through entropy effects. However, understanding the origin of their exceptional performance and identifying active centers is hindered by the diverse microenvironment in HEAs. Herein, NiFeCoCuRu HEAs designed with an average diameter of 2.17 nm, featuring different adsorption capacities for various reactants and intermediates in Li-mediated CO2 redox reactions, are introduced. The electronegativity-dependent nature of NiFeCoCuRu HEAs induces significant charge redistribution, shifting the d-band center closer to Fermi level and forming highly active clusters of Ru, Co, and Ni for Li-based compounds adsorptions. This lowers energy barriers and simultaneously stabilizes *LiCO2 and LiCO3+CO intermediates, enhancing the efficiency of both CO2 reduction and Li2CO3 decomposition over extended periods. This work provides insights into specific active site interactions with intermediates, highlighting the potential of HEAs as promising catalysts for intricate CO2 redox reactions.

3.
Nat Commun ; 15(1): 3393, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649349

RESUMO

Sluggish kinetics of the CO2 reduction/evolution reactions lead to the accumulation of Li2CO3 residuals and thus possible catalyst deactivation, which hinders the long-term cycling stability of Li-CO2 batteries. Apart from catalyst design, constructing a fluorinated solid-electrolyte interphase is a conventional strategy to minimize parasitic reactions and prolong cycle life. However, the catalytic effects of solid-electrolyte interphase components have been overlooked and remain unclear. Herein, we systematically regulate the compositions of solid-electrolyte interphase via tuning electrolyte solvation structures, anion coordination, and binding free energy between Li ion and anion. The cells exhibit distinct improvement in cycling performance with increasing content of C-N species in solid-electrolyte interphase layers. The enhancement originates from a catalytic effect towards accelerating the Li2CO3 formation/decomposition kinetics. Theoretical analysis reveals that C-N species provide strong adsorption sites and promote charge transfer from interface to *CO22- during discharge, and from Li2CO3 to C-N species during charge, thereby building a bidirectional fast-reacting bridge for CO2 reduction/evolution reactions. This finding enables us to design a C-N rich solid-electrolyte interphase via dual-salt electrolytes, improving cycle life of Li-CO2 batteries to twice that using traditional electrolytes. Our work provides an insight into interfacial design by tuning of catalytic properties towards CO2 reduction/evolution reactions.

4.
Adv Mater ; : e2312551, 2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38433298

RESUMO

Owing to continuing global use of lithium-ion batteries (LIBs), in particular in electric vehicles (EVs), there is a need for sustainable recycling of spent LIBs. Deep eutectic solvents (DESs) are reported as "green solvents" for low-cost and sustainable recycling. However, the lack of understanding of the coordination mechanisms between DESs and transition metals (Ni, Mn and Co) and Li makes selective separation of transition metals with similar physicochemical properties practically difficult. Here, it is found that the transition metals and Li have a different stable coordination structure with the different anions in DES during leaching. Further, based on the different solubility of these coordination structures in anti-solvent (acetone), a leaching and separation process system is designed, which enables high selective recovery of transition metals and Li from spent cathode LiNi1/3Co1/3Mn1/3O2 (NCM111), with recovery of acetone. Recovery of spent LiCoO2 (LCO) cathode is also evidenced and a significant selective recovery for Co and Li is established, together with recovery and reuse of acetone and DES. It is concluded that the tuning of cation-anion coordination structure and anti-solvent crystallization are practical for selective recovery of critical metal resources in the spent LIBs recycling.

5.
Nat Nanotechnol ; 19(3): 306-310, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37945988

RESUMO

The use of liquid gallium as a solvent for catalytic reactions has enabled access to well-dispersed metal atoms configurations, leading to unique catalytic phenomena, including activation of neighbouring liquid atoms and mobility-induced activity enhancement. To gain mechanistic insights into liquid metal catalysts, here we introduce a GaSn0.029Ni0.023 liquid alloy for selective propylene synthesis from decane. Owing to their mobility, dispersed atoms in a Ga matrix generate configurations where interfacial Sn and Ni atoms allow for critical alignments of reactants and intermediates. Computational modelling, corroborated by experimental analyses, suggests a particular reaction mechanism by which Sn protrudes from the interface and an adjacent Ni, below the interfacial layer, aligns precisely with a decane molecule, facilitating propylene production. We then apply this reaction pathway to canola oil, attaining a propylene selectivity of ~94.5%. Our results offer a mechanistic interpretation of liquid metal catalysts with an eye to potential practical applications of this technology.

6.
Phys Chem Chem Phys ; 25(44): 30716-30726, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37934128

RESUMO

Two-dimensional materials have been considered as novel anode materials for LIBs because of their large surface area, small volume change, and low Li diffusion barrier. Among them, the two-dimensional material SixGey has many excellent properties as an anode. However, Ge is expensive and not suitable for mass production. Therefore, proper Ge doping is of great significance to improve performance and reduce cost. Herein, we systematically study the effect of Ge doping and its concentration on the structure and electrochemical performance of two-dimensional SixGey by density functional theory (DFT) calculations. The incorporation of low concentration Ge can improve the horizontal and vertical diffusion ability of Li atoms compared to silicene. However, excessive Ge will increase the horizontal diffusion energy barrier of Li and reduce the theoretical capacity, where Si6Ge2 has a relatively high theoretical capacity and a low diffusion energy barrier. In addition, fully lithiated 2D SixGey shows poor electrical conductivity and increasing Ge concentration seems to be effective in improving the electrical conductivity of the material. This study will provide significant theoretical guidance for the design and preparation of two-dimensional silicon-based materials.

7.
ACS Appl Mater Interfaces ; 15(48): 56464-56477, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37987616

RESUMO

Nanoscale heterojunction networks are increasingly regarded as promising functional materials for a variety of optoelectronic and photocatalytic devices. Despite their superior charge-carrier separation efficiency, a major challenge remains in the optimization of their surface properties, with surface defects playing a major role in charge trapping and recombination. Here, we report the effective engineering of the photocatalytic properties of nanoscale heterojunction networks via deep ultraviolet photoactivation throughout their cross-section. For the first time, in-depth XPS analysis of very thick (∼10 µm) NixOy-ZnO films reveals localized p-n nanoheterojunctions with tunable oxygen vacancies (Vo) originating from both NixOy and ZnO nanocrystals. Optimizing the amount of oxygen vacancies leads to a 30-fold increase in the photochemoresistive response of these networks, enabling the detection of representative analyte concentrations down to 2 and 20 ppb at an optimal temperature of 150 °C and room temperature, respectively. Density functional theory calculations reveal that this performance enhancement is presumably due to an 80% increase in the analyte adsorption energy. This flexible nanofabrication approach in conjunction with straightforward vacancy control via photoactivation provides an effective strategy for engineering the photocatalytic activity of porous metal oxide semiconductor networks with applications in chemical sensors, photodetectors, and photoelectrochemical cells.

8.
Nat Commun ; 14(1): 6526, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37845239

RESUMO

Progress towards the integration of technology into living organisms requires power devices that are biocompatible and mechanically flexible. Aqueous zinc ion batteries that use hydrogel biomaterials as electrolytes have emerged as a potential solution that operates within biological constraints; however, most of these batteries feature inferior electrochemical properties. Here, we propose a biocompatible hydrogel electrolyte by utilising hyaluronic acid, which contains ample hydrophilic functional groups. The gel-based electrolyte offers excellent anti-corrosion ability for zinc anodes and regulates zinc nucleation/growth. Also, the gel electrolyte provides high battery performance, including a 99.71% Coulombic efficiency, over 5500 hours of long-term stability, improved cycle life of 250 hours under a high zinc utilization rate of 80%, and high biocompatibility. Importantly, the Zn//LiMn2O4 pouch cell exhibits 82% capacity retention after 1000 cycles at 3 C. This work presents a promising gel chemistry that controls zinc behaviour, offering great potential in biocompatible energy-related applications and beyond.

9.
Small ; : e2304650, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37863809

RESUMO

Implementation of proton-exchange membrane water electrolyzers for large-scale sustainable hydrogen production requires the replacement of scarce noble-metal anode electrocatalysts with low-cost alternatives. However, such earth-abundant materials often exhibit inadequate stability and/or catalytic activity at low pH, especially at high rates of the anodic oxygen evolution reaction (OER). Here, the authors explore the influence of a dielectric nanoscale-thin oxide layer, namely Al2 O3 , SiO2 , TiO2 , SnO2 , and HfO2 , prepared by atomic layer deposition, on the stability and catalytic activity of low-cost and active but insufficiently stable Co3 O4 anodes. It is demonstrated that the ALD layers improve both the stability and activity of Co3 O4 following the order of HfO2 > SnO2 > TiO2 > Al2 O3 , SiO2 . An optimal HfO2 layer thickness of 12 nm enhances the Co3 O4 anode durability by more than threefold, achieving over 42 h of continuous electrolysis at 10 mA cm-2 in 1 m H2 SO4 electrolyte. Density functional theory is used to investigate the superior performance of HfO2 , revealing a major role of the HfO2 |Co3 O4 interlayer forces in the stabilization mechanism. These insights offer a potential strategy to engineer earth-abundant materials for low-pH OER catalysts with improved performance from earth-abundant materials for efficient hydrogen production.

10.
Adv Mater ; 35(48): e2305573, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37734330

RESUMO

Ni-based hydroxides are promising electrocatalysts for biomass oxidation reactions, supplanting the oxygen evolution reaction (OER) due to lower overpotentials while producing value-added chemicals. The identification and subsequent engineering of their catalytically active sites are essential to facilitate these anodic reactions. Herein, the proportional relationship between catalysts' deprotonation propensity and Faradic efficiency of 5-hydroxymethylfurfural (5-HMF)-to-2,5 furandicarboxylic acid (FDCA, FEFDCA ) is revealed by thorough density functional theory (DFT) simulations and atomic-scale characterizations, including in situ synchrotron diffraction and spectroscopy methods. The deprotonation capability of ultrathin layer-double hydroxides (UT-LDHs) is regulated by tuning the covalency of metal (M)-oxygen (O) motifs through defect site engineering and selection of M3+ co-chemistry. NiMn UT-LDHs show an ultrahigh FEFDCA of 99% at 1.37 V versus reversible hydrogen electrode (RHE) and retain a high FEFDCA of 92.7% in the OER-operating window at 1.52 V, about 2× that of NiFe UT-LDHs (49.5%) at 1.52 V. Ni-O and Mn-O motifs function as dual active sites for HMF electrooxidation, where the continuous deprotonation of Mn-OH sites plays a dominant role in achieving high selectivity while suppressing OER at high potentials. The results showcase a universal concept of modulating competing anodic reactions in aqueous biomass electrolysis by electronically engineering the deprotonation behavior of metal hydroxides, anticipated to be translatable across various biomass substrates.

11.
Small Methods ; : e2300804, 2023 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-37691014

RESUMO

The practical application of aqueous zinc-ion batteries (AZIBs) is limited by serious side reactions, such as the hydrogen evolution reaction and Zn dendrite growth. Here, the study proposes a novel adoption of a biodegradable electrolyte additive, γ-Valerolactone (GVL), with only 1 vol.% addition (GVL-to-H2 O volume ratio) to enable a stable Zn metal anode. The combination of experimental characterizations and theoretical calculations verifies that the green GVL additive can competitively engage the solvated structure of Zn2+ via replacing a H2 O molecule from [Zn(H2 O)6 ]2+ , which can efficiently reduce the reactivity of water and inhibit the subsequent side reactions. Additionally, GVL molecules are preferentially adsorbed on the surface of Zn to regulate the uniform Zn deposition and suppress the Zn dendrite growth. Consequently, the Zn anode exhibits boosted stability with ultralong cycle lifespan (over 3500 h) and high reversibility with 99.69% Coulombic efficiency. The Zn||MnO2 full batteries with ZnSO4 -GVL electrolyte show a high capacity of 219 mAh g-1 at 0.5 A g-1 and improved capacity retention of 78% after 550 cycles. This work provides inspiration on bio-based electrolyte additives for aqueous battery chemistry and promotes the practical application of AZIBs.

12.
Nat Commun ; 14(1): 2720, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37169771

RESUMO

Aqueous Zn-ion batteries have attracted increasing research interest; however, the development of these batteries has been hindered by several challenges, including dendrite growth, Zn corrosion, cathode material degradation, limited temperature adaptability and electrochemical stability window, which are associated with water activity and the solvation structure of electrolytes. Here we report that water activity is suppressed by increasing the electron density of the water protons through interactions with highly polar dimethylacetamide and trimethyl phosphate molecules. Meanwhile, the Zn corrosion in the hybrid electrolyte is mitigated, and the electrochemical stability window and the operating temperature of the electrolyte are extended. The dimethylacetamide alters the surface energy of Zn, guiding the (002) plane dominated deposition of Zn. Molecular dynamics simulation evidences Zn2+ ions are solvated with fewer water molecules, resulting in lower lattice strain in the NaV3O8·1.5H2O cathode during the insertion of hydrated Zn2+ ions, boosting the lifespan of Zn|| NaV3O8·1.5H2O cell to 3000 cycles.

13.
Angew Chem Int Ed Engl ; 62(21): e202303011, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36949029

RESUMO

Aqueous Zn-Iodine (I2 ) batteries are attractive for large-scale energy storage. However, drawbacks include, Zn dendrites, hydrogen evolution reaction (HER), corrosion and, cathode "shuttle" of polyiodines. Here we report a class of N-containing heterocyclic compounds as organic pH buffers to obviate these. We evidence that addition of pyridine /imidazole regulates electrolyte pH, and inhibits HER and anode corrosion. In addition, pyridine and imidazole preferentially absorb on Zn metal, regulating non-dendritic Zn plating /stripping, and achieving a high Coulombic efficiency of 99.6 % and long-term cycling stability of 3200 h at 2 mA cm-2 , 2 mAh cm-2 . It is also confirmed that pyridine inhibits polyiodines shuttling and boosts conversion kinetics for I- /I2 . As a result, the Zn-I2 full battery exhibits long cycle stability of >25 000 cycles and high specific capacity of 105.5 mAh g-1 at 10 A g-1 . We conclude organic pH buffer engineering is practical for dendrite-free and shuttle-free Zn-I2 batteries.

14.
ACS Nano ; 17(3): 2387-2398, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36727675

RESUMO

Single-atom catalysts (SACs) have shown potential for achieving an efficient electrochemical CO2 reduction reaction (CO2RR) despite challenges in their synthesis. Here, Ag2S/Ag nanowires provide initial anchoring sites for Cu SACs (Cu/Ag2S/Ag), then Cu/Ag(S) was synthesized by an electrochemical treatment resulting in complete sulfur removal, i.e., Cu SACs on a defective Ag surface. The CO2RR Faradaic efficiency (FECO2RR) of Cu/Ag(S) reaches 93.0% at a CO2RR partial current density (jCO2RR) of 2.9 mA/cm2 under -1.0 V vs RHE, which outperforms sulfur-removed Ag2S/Ag without Cu SACs (Ag(S), 78.5% FECO2RR with 1.8 mA/cm2jCO2RR). At -1.4 V vs RHE, both FECO2RR and jCO2RR over Cu/Ag(S) reached 78.6% and 6.1 mA/cm2, which tripled those over Ag(S), respectively. As revealed by in situ and ex situ characterizations together with theoretical calculations, the interacted Cu SACs and their neighboring defective Ag surface increase microstrain and downshift the d-band center of Cu/Ag(S), thus lowering the energy barrier by ∼0.5 eV for *CO formation, which accounts for the improved CO2RR activity and selectivity toward related products such as CO and C2+ products.

15.
Angew Chem Int Ed Engl ; 62(8): e202217186, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36538473

RESUMO

Establishing generic catalyst design principles by identifying structural features of materials that influence their performance will advance the rational engineering of new catalytic materials. In this study, by investigating metal-substituted manganese oxide (spinel) nanoparticles, Mn3 O4 :M (M=Sr, Ca, Mg, Zn, Cu), we rationalize the dependence of the activity of Mn3 O4 :M for the electrocatalytic oxygen reduction reaction (ORR) on the enthalpy of formation of the binary MO oxide, Δf H°(MO), and the Lewis acidity of the M2+ substituent. Incorporation of elements M with low Δf H°(MO) enhances the oxygen binding strength in Mn3 O4 :M, which affects its activity in ORR due to the established correlation between ORR activity and the binding energy of *O/*OH/*OOH species. Our work provides a perspective on the design of new compositions for oxygen electrocatalysis relying on the rational substitution/doping by redox-inactive elements.

16.
Adv Mater ; 34(45): e2206754, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36124561

RESUMO

H2 evolution is the reason for poor reversibility and limited cycle stability with Zn-metal anodes, and impedes practical application in aqueous zinc-ion batteries (AZIBs). Here, using a combined gas chromatography experiment and computation, it is demonstrated that H2 evolution primarily originates from solvated water, rather than free water without interaction with Zn2+ . Using linear sweep voltammetry (LSV) in salt electrolytes, H2 evolution is evidenced to occur at a more negative potential than zinc reduction because of the high overpotential against H2 evolution on Zn metal. The hypothesis is tested and, using a glycine additive to reduce solvated water, it is confirmed that H2 evolution and "parasitic" side reactions are suppressed on the Zn anode. This electrolyte additive is evidenced to suppress H2 evolution, reduce corrosion, and give a uniform Zn deposition in Zn|Zn and Zn|Cu cells. It is demonstrated that Zn|PANI (highly conductive polyaniline) full cells exhibit boosted electrochemical performance in 1 M ZnSO4 -3 M glycine electrolyte. It is concluded that this new understanding of electrochemistry of H2 evolution can be used for design of relatively low-cost and safe AZIBs for practical large-scale energy storage.

17.
JACS Au ; 2(12): 2731-2741, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36590255

RESUMO

MgO-based CO2 sorbents promoted with molten alkali metal nitrates (e.g., NaNO3) have emerged as promising materials for CO2 capture and storage technologies due to their low cost and high theoretical CO2 uptake capacities. Yet, the mechanism by which molten alkali metal nitrates promote the carbonation of MgO (CO2 capture reaction) remains debated and poorly understood. Here, we utilize 18O isotope labeling experiments to provide new insights into the carbonation mechanism of NaNO3-promoted MgO sorbents, a system in which the promoter is molten under operation conditions and hence inherently challenging to characterize. To conduct the 18O isotope labeling experiments, we report a facile and large-scale synthesis procedure to obtain labeled MgO with a high 18O isotope content. We use Raman spectroscopy and in situ thermogravimetric analysis in combination with mass spectrometry to track the 18O label in the solid (MgCO3), molten (NaNO3), and gas (CO2) phases during the CO2 capture (carbonation) and regeneration (decarbonation) reactions. We discovered a rapid oxygen exchange between CO2 and MgO through the reversible formation of surface carbonates, independent of the presence of the promoter NaNO3. On the other hand, no oxygen exchange was observed between NaNO3 and CO2 or NaNO3 and MgO. Combining the results of the 18O labeling experiments, with insights gained from atomistic calculations, we propose a carbonation mechanism that, in the first stage, proceeds through a fast, surface-limited carbonation of MgO. These surface carbonates are subsequently dissolved as [Mg2+···CO3 2-] ionic pairs in the molten NaNO3 promoter. Upon reaching the solubility limit, MgCO3 crystallizes at the MgO/NaNO3 interface.

18.
ACS Appl Mater Interfaces ; 13(1): 1791-1806, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33393758

RESUMO

Density functional theory calculations were used to investigate the phase transformations of LixTiO2 (at 0 ≤ x ≤ 1), solid-state Li+ diffusion, and interfacial charge-transfer reactions in both crystalline and amorphous forms of TiO2. It is shown that in contrast to crystalline TiO2 polymorphs, the energy barrier to Li+ diffusion in amorphous TiO2 decreases with increasing mole fraction of Li+ due to the changes of chemical species pair interactions following the progressive filling of low-energy Li+ trapping sites. Sites with longer Li-Ti and Li-O interactions exhibit lower Li+ insertion energies and higher migration energy barriers. Due to its disordered atomic arrangement and increasing Li+ diffusivity at higher mole fractions, amorphous TiO2 exhibits both surface and bulk storage mechanisms. The results suggest that nanostructuring of crystalline TiO2 can increase both the rate and capacity because the capacity dependence on the bulk storage mechanism is minimized and replaced with the surface storage mechanism. These insights into Li+ storage mechanisms in different forms of TiO2 can guide the fabrication of TiO2 electrodes to maximize the capacity and rate performance in the future.

20.
J Phys Chem Lett ; 10(24): 7856-7862, 2019 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-31790255

RESUMO

Magnesium halide salts are an exciting prospect as stable and high-performance electrolytes for rechargeable Mg batteries (RMBs). By nature of their complex equilibria, these salts exist in solution as a variety of electroactive species (EAS) in equilibrium with counterions such as AlCl4-. Here we investigated ion agglomeration and transport of several such EAS in MgCl2 salts dissolved in ethereal solvents under both equilibrium and operating conditions using large-scale atomistic simulations. We found that the solute morphology is strongly characterized by the presence of clusters and is governed by the solvation structures of EAS. Specifically, the isotropic solvation of Mg2+ results in the slow formation of a bulky cluster, compared with chainlike analogues observed in the Cl-containing EAS such as Mg2Cl3+, MgCl+, and Mg2Cl22+. We further illustrate these clusters can reduce the diffusivity of charge-carrying species in the MgCl2-based electrolyte by at least an order of magnitude. Our findings for cluster formation, morphology, and kinetics can provide useful insight into the electrochemical reactions at the anode-electrolyte interface in RMBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA