Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Assunto principal
Intervalo de ano de publicação
1.
ACS Biomater Sci Eng ; 9(12): 6715-6723, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38032859

RESUMO

Self-organized peptides are unique materials with various applications in biology, medicine, and nanotechnology. Many of these applications require fabrication of homogeneous thin films having high piezoelectric effect and sufficiently low roughness. Recently, a facile method for the controlled deposition of flat solid films of the most studied peptide, diphenylalanine (FF), has been proposed, which is based on the crystallization of FF in the amorphous phase under the action of water vapor. This method is very advantageous compared with crystallization from a liquid phase reported previously. Here, we thoroughly investigate the mechanism of solid-state transformation from the amorphous to crystalline phase. The study revealed that the process proceeds in two distinct stages, maintaining clamped condition of self-assembling building blocks that preserve the films' morphology and high piezoelectric activity. We emphasize the critical role of water diffusion that governs two-dimensional growth of crystalline domains in FF films, merging in very dense, flat, and homogeneous films. These findings open a wide perspective for using this methodology for the direct fabrication of biofilms from the amorphous phase. We thus expect the application of these films to various nanotechnological applications of self-assembled structures.


Assuntos
Nanoestruturas , Nanoestruturas/química , Dipeptídeos/química , Peptídeos/química
2.
Nanomaterials (Basel) ; 10(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717947

RESUMO

This work describes a novel approach to produce high quality release paper at lower cost than traditional methods. The anti-adhesive properties of release paper require the use of expensive machine glazed kraft or "Glassine" paper as the paper base. A series of polymer coatings including polyvinyl alcohol, carboxymethyl cellulose, polyethylene vinyl acetate, and polystyrene were chemically synthesized and coated onto a low cost pulp paper base. Surface roughness (Sa) and smoothness coefficients (k) were determined by atomic force microscopy (AFM), and the interactions between the polymer coating and base paper were investigated by Raman spectroscopy. Studies show the use of polyethylene vinyl acetate (PEVA) as a pre-coating layer on low cost pulp paper exhibits similar anti-adhesive properties as higher cost paper bases. In low margin markets such as the production of release paper, decreases in cost are critical to industry survival.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA