Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2312421, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38386009

RESUMO

The discovery of higher-order topological insulator metamaterials, in analogy with their condensed-matter counterparts, has enabled various breakthroughs in photonics, mechanics, and acoustics. A common way of inducing higher-order topological wave phenomena is through pseudo-spins, which mimic the electron spins as a symmetry-breaking degree of freedom. Here we exploit degenerate orbitals in acoustic resonant cavities to demonstrate versatile, orbital-selective, higher-order topological corner states. Type-II corner states are theoretically investigated and experimentally demonstrated based on tailored orbital interactions, without the need for long-range hoppings that has so far served as a key ingredient for Type-II corner states in single-orbital systems. Due to the orthogonal nature of the degenerate p orbitals, we also introduce a universal strategy to realize orbital-dependent edge modes, featuring high-Q edge states identified in bulk bands. Our findings provide an understanding of the interplay between acoustic orbitals and topology, shedding light on orbital-related topological wave physics, as well as its applications for acoustic sensing and trapping. This article is protected by copyright. All rights reserved.

2.
Nat Commun ; 14(1): 8162, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071337

RESUMO

Topological phases of matter have attracted significant attention in recent years, due to the unusual robustness of their response to defects and disorder. Various research efforts have been exploring classical and quantum topological wave phenomena in engineered materials, in which different degrees of freedom (DoFs) - for the most part based on broken crystal symmetries associated with pseudo-spins - induce synthetic gauge fields that support topological phases and unveil distinct forms of wave propagation. However, spin is not the only viable option to induce topological effects. Intrinsic orbital DoFs in spinless systems may offer a powerful alternative platform, mostly unexplored to date. Here we reveal orbital-selective wave-matter interactions in acoustic systems supporting multiple orbital DoFs, and report the experimental demonstration of disorder-immune orbital-induced topological edge states in a zigzag acoustic 1D spinless lattice. This work expands the study of topological phases based on orbitals, paving the way to explore other orbital-dependent phenomena in spinless systems.

3.
Chem Rev ; 123(12): 7585-7654, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37224438

RESUMO

The topological properties of an object, associated with an integer called the topological invariant, are global features that cannot change continuously but only through abrupt variations, hence granting them intrinsic robustness. Engineered metamaterials (MMs) can be tailored to support highly nontrivial topological properties of their band structure, relative to their electronic, electromagnetic, acoustic and mechanical response, representing one of the major breakthroughs in physics over the past decade. Here, we review the foundations and the latest advances of topological photonic and phononic MMs, whose nontrivial wave interactions have become of great interest to a broad range of science disciplines, such as classical and quantum chemistry. We first introduce the basic concepts, including the notion of topological charge and geometric phase. We then discuss the topology of natural electronic materials, before reviewing their photonic/phononic topological MM analogues, including 2D topological MMs with and without time-reversal symmetry, Floquet topological insulators, 3D, higher-order, non-Hermitian and nonlinear topological MMs. We also discuss the topological aspects of scattering anomalies, chemical reactions and polaritons. This work aims at connecting the recent advances of topological concepts throughout a broad range of scientific areas and it highlights opportunities offered by topological MMs for the chemistry community and beyond.

4.
Ann N Y Acad Sci ; 1517(1): 63-77, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36069109

RESUMO

Topology is the branch of mathematics studying the properties of an object that are preserved under continuous deformations. Quite remarkably, the powerful theoretical tools of topology have been applied over the past few years to study the electronic band structure of crystals. Topological band theory can explain and predict topological phase transitions in a material, and the unusual robustness of certain band structure shapes, such as Dirac cones, against small perturbations. These findings have also unveiled a new phase of matter-topological insulators-whose exotic transport properties at their boundaries are topologically protected against imperfections and disorder. The fascinating features of topological boundary states have triggered the search for their analogs in classical wave physics. Here, we focus on the peculiar features of two-dimensional topological insulators for sound and mechanical waves. Two-dimensional Dirac cones and phononic topological insulators can emerge under certain conditions in periodic acoustic metamaterials, demonstrating great potential for acoustic and mechanical systems to demonstrate, over a tabletop platform, complex fundamental phenomena driven by topological concepts. In addition, these discoveries offer a direct path toward new technologies for enhanced sound control and manipulation.

5.
Adv Sci (Weinh) ; 9(13): e2200181, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35253395

RESUMO

The twist angle between a pair of stacked 2D materials has been recently shown to control remarkable phenomena, including the emergence of flat-band superconductivity in twisted graphene bilayers, of higher-order topological phases in twisted moiré superlattices, and of topological polaritons in twisted hyperbolic metasurfaces. These discoveries, at the foundations of the emergent field of twistronics, have so far been mostly limited to explorations in atomically thin condensed matter and photonic systems, with limitations on the degree of control over geometry and twist angle, and inherent challenges in the fabrication of carefully engineered stacked multilayers. Here, this work extends twistronics to widely reconfigurable macroscopic elastic metasurfaces consisting of LEGO pillar resonators. This work demonstrates highly tailored anisotropy over a single-layer metasurface driven by variations in the twist angle between a pair of interleaved spatially modulated pillar lattices. The resulting quasi-periodic moiré patterns support topological transitions in the isofrequency contours, leading to strong tunability of highly directional waves. The findings illustrate how the rich phenomena enabled by twistronics and moiré physics can be translated over a single-layer metasurface platform, introducing a practical route toward the observation of extreme phenomena in a variety of wave systems, potentially applicable to both quantum and classical settings without multilayered fabrication requirements.

6.
Sensors (Basel) ; 22(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35161686

RESUMO

Lock-in thermography was applied to the measurement of the in-plane thermal diffusivity of three polyethersulfone (PES) textiles characterized by different weaving pattern as well as different mass density of interlacing fibers. The experimental results showed that the in-plane thermal diffusivity in each direction decreased with the increase of the fibers' linear mass density, thus leading to an anisotropic behavior of the thermal diffusivity in the specimen where PES fibers with different density were interlaced. A new theoretical model for the study of the heat diffusion in textiles was specifically developed and, thereafter, employed for the analysis of the experimental results. As such, our textile model approach, shedding light on the role of different textile and fibers parameters on the resulting thermal diffusivity, paves the way for the development and design of textiles with tailored thermal behavior.

7.
J Acoust Soc Am ; 150(3): 2040, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34598606

RESUMO

In the last few years, highly anisotropic metamaterials have been explored in various geometries, showcasing interesting routes to achieve better control of sound propagation. As an extreme example, hyperbolic metasurfaces have been shown to offer broadband enhanced sound-matter interactions and diffraction-less propagation of acoustic waves, providing opportunities for sub-diffraction imaging and enhanced sound emission. In this study, we show that structure design of a locally resonant metamaterial enables extreme anisotropic responses, ranging from elliptic to hyperbolic propagation of acoustic surface waves, offering interesting opportunities for extreme sound guiding and steering at the subwavelength scale well compatible with a wide range of additive manufacturing techniques.

8.
Nat Commun ; 12(1): 2615, 2021 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-33972517

RESUMO

When sound interacts with geometrically asymmetric structures, it experiences coupling between pressure and particle velocity, known as Willis coupling. While in most instances this phenomenon is perturbative in nature, tailored asymmetries combined with resonances can largely enhance it, enabling exotic acoustic phenomena. In these systems, Willis coupling obeys reciprocity, imposing an even symmetry of the Willis coefficients with respect to time reversal and the impinging wave vector, which translates into stringent constraints on the overall scattering response. In this work, we introduce and experimentally observe a dual form of acoustic Willis coupling, arising in geometrically symmetric structures when time-reversal symmetry is broken, for which the pressure-velocity coupling is purely odd-symmetric. We derive the conditions to maximize this effect, we experimentally verify it in a symmetric subwavelength scatterer biased by angular momentum, and we demonstrate the opportunities for sound scattering enabled by odd Willis coupling. Our study opens directions for acoustic metamaterials, with direct implications for sound control, non-reciprocal scattering, wavefront shaping and signal routing, of broad interest also for nano-optics, photonics, elasto-dynamics, and mechanics.

9.
Phys Rev Lett ; 121(26): 267601, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636133

RESUMO

The exciting discovery of bidimensional systems in condensed matter physics has triggered the search of their photonic analogues. In this Letter, we describe a general scheme to reproduce some of the systems ruled by a tight-binding Hamiltonian in a locally resonant metamaterial; by specifically controlling the structure and the composition it is possible to engineer the band structure at will. We numerically and experimentally demonstrate this assertion in the microwave domain by reproducing the band structure of graphene, the most famous example of those 2D systems, and by accurately extracting the Dirac cones. This is direct evidence that opting for a crystalline description of those subwavelength scaled systems, as opposed to the usual description in terms of effective parameters, makes them a really convenient tabletop platform to investigate the tantalizing challenges that solid-state physics offer.

10.
Sci Rep ; 7(1): 15359, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127320

RESUMO

Graphene, a honeycomb lattice of carbon atoms ruled by tight-binding interaction, exhibits extraordinary electronic properties due to the presence of Dirac cones within its band structure. These intriguing singularities have naturally motivated the discovery of their classical analogues. In this work, we present a general and direct procedure to reproduce the peculiar physics of graphene within a very simple acoustic metamaterial: a double lattice of soda cans resonating at two different frequencies. The first triangular sub-lattice generates a bandgap at low frequency, which induces a tight-binding coupling between the resonant defects of the second honeycomb one, hence allowing us to obtain a graphene-like band structure. We prove the relevance of this approach by showing that both numerical and experimental dispersion relations exhibit the requested Dirac cone. We also demonstrate the straightforward monitoring of the coupling strength within the crystal of resonant defects. This work shows that crystalline metamaterials are very promising candidates to investigate tantalizing solid-state physics phenomena with classical waves.

11.
Nat Commun ; 8: 16023, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28719573

RESUMO

The exciting discovery of topological condensed matter systems has lately triggered a search for their photonic analogues, motivated by the possibility of robust backscattering-immune light transport. However, topological photonic phases have so far only been observed in photonic crystals and waveguide arrays, which are inherently physically wavelength scaled, hindering their application in compact subwavelength systems. In this letter, we tackle this problem by patterning the deep subwavelength resonant elements of metamaterials onto specific lattices, and create crystalline metamaterials that can develop complex nonlocal properties due to multiple scattering, despite their very subwavelength spatial scale that usually implies to disregard their structure. These spatially dispersive systems can support subwavelength topological phases, as we demonstrate at microwaves by direct field mapping. Our approach gives a straightforward tabletop platform for the study of photonic topological phases, and allows to envision applications benefiting the compactness of metamaterials and the amazing potential of topological insulators.

12.
Ann Biomed Eng ; 41(9): 1950-6, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23568153

RESUMO

The human knee is one of the most frequently injured joints. More than half of these injuries are related to a failure of the anterior cruciate ligament. Current treatments (allogeneic and autologous) bear several disadvantages which can be overcome through the use of synthetic structures. Within the scope of this paper the potential of tubular woven fabrics for the use as artificial ligaments has been evaluated. Twelve fabrics made of polyethylene terephthalate and polytetrafluoroethylene were produced using shuttle weaving technology. Mechanical and biological properties of the fabrics were assessed using static tensile testing and cytotoxicity assays. The results obtained within this study show that woven tubular fabrics can be potentially used as artificial ligament structures as they can provide the desired medical and mechanical properties for cruciate ligament replacements. Through the choice of material and weaving parameters the fabrics' tensile properties can imitate the stress-strain characteristic of the human cruciate ligament. Further assessments in terms of cyclic loading behavior and abrasion resistance of the material are needed to evaluate the success in long term implantation.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Polietilenotereftalatos/química , Ligamento Cruzado Posterior , Próteses e Implantes , Feminino , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA