Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.885
Filtrar
1.
Pharmaceutics ; 16(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39065612

RESUMO

The development of generic ophthalmic drug products with complex formulations is challenging due to the complexity of the ocular system and a lack of sensitive testing to evaluate the interplay of its physiology with ophthalmic drugs. New methods are needed to facilitate the development of ophthalmic generic drug products. Ocular physiologically based pharmacokinetic (O-PBPK) models can provide insight into drug partitioning in eye tissues that are usually not accessible and/or are challenging to sample in humans. This study aims to demonstrate the utility of an ocular PBPK model to predict human exposure following the administration of ophthalmic suspension. Besifloxacin (Bes) suspension is presented as a case study. The O-PBPK model for Bes ophthalmic suspension (Besivance® 0.6%) accounts for nasolacrimal drainage, suspended particle dissolution in the tears, ocular absorption, and distribution in the rabbit eye. A topical controlled release formulation was used to integrate the effect of Durasite® on Bes ocular retention. The model was subsequently used to predict Bes exposure after its topical administration in humans. Drug-specific parameters were used as validated for rabbits. The physiological parameters were adjusted to match human ocular physiology. Simulated human ocular pharmacokinetic profiles were compared with the observed ocular tissue concentration data to assess the OCAT models' ability to predict human ocular exposure. The O-PBPK model simulations adequately described the observed concentrations in the eye tissues following the topical administration of Bes suspension in rabbits. After adjustment of physiological parameters to represent the human eye, the extrapolation of clinical ocular exposure following a single ocular administration of Bes suspension was successful.

2.
Poult Sci ; 103(10): 104084, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-39067126

RESUMO

This study aims to develop an experimental model of high lactate levels in broilers to mimic the condition of birds under stress or diseases and evaluate its consequent effects on meat quality. The injection sites and dosage effects were compared separately in 2 experiments. Experiment 1 includes 3 injection sites: intraperitoneal injection, intramuscular injection, and subcutaneous injection. Experiment 2 was a dosage experiment based on the results of Experiment 1: sodium lactate intraperitoneal injection group with 1.5, 3, 6 mM concentration. The results showed that injecting sodium lactate intraperitoneally, intramuscularly, or subcutaneously all significantly decreased body weight and breast muscle weight while elevating lactic acid levels in both the blood and breast muscle of broilers. Moreover, all 3 injection methods caused a significant reduction in pH24h and an increase in the shear force value of breast muscle. In addition, dose-response experiments of intraperitoneal injection showed that a concentration of 3 mM and 6 mM were significantly decreased body weight and breast muscle weight in broiler chickens, accompanied by a notable increase in breast muscle lactate content. Compared to the control group, intraperitoneal injections of 1.5 mM, 3 mM, and 6 mM sodium lactate treatments significantly reduced the yellowness values of the breast muscle. As the dose of sodium lactate increased, the shear force value of the breast meat exhibited linear and quadratic increments, while the drip loss decreased linearly. Intraperitoneal injection of 3 mM sodium lactate also significantly reduced the pH24h of broiler breast muscle. In addition, an increased dose of lactate injections up-regulated the glycolytic pathway responsible for endogenous lactate production in the breast muscle by upregulating the expression of phosphofructokinase, pyruvate kinase and lactate dehydrogenase A. In conclusion, intraperitoneal injection of sodium lactate at 3 mM directly increased breast muscle lactate levels, providing a valuable method for establishing a high-level lactate model in poultry.

3.
Sci Rep ; 14(1): 17512, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080436

RESUMO

In geological engineering and related fields, accurately and quickly identifying lithology and assessing rock strength are crucial for ensuring structural safety and optimizing design. Traditional rock strength assessment methods mainly rely on field sampling and laboratory tests, such as uniaxial compressive strength (UCS) tests and velocity tests. Although these methods provide relatively accurate rock strength data, they are complex, time-consuming, and unable to reflect real-time changes in field conditions. Therefore, this study proposes a new method based on artificial intelligence and neural networks to improve the efficiency and accuracy of rock strength assessments. This research utilizes a Transformer + UNet hybrid model for lithology identification and an optimized ResNet-18 model for determining rock weathering degrees, thereby correcting the strength of the tunnel face surrounding rock. Experimental results show that the Transformer + UNet hybrid model achieves an accuracy of 95.57% in lithology identification tasks, while the optimized ResNet model achieves an accuracy of 96.13% in rock weathering degree determination. Additionally, the average relative error in tunnel face strength detection results is only 9.33%, validating the feasibility and effectiveness of this method in practical engineering applications. The multi-model neural network system developed in this study significantly enhances prediction accuracy and efficiency, providing robust scientific decision support for tunnel construction, thereby improving construction safety and economy.

4.
Front Big Data ; 7: 1410424, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39011466

RESUMO

With the increasing popularity of Graph Neural Networks (GNNs) for predictive tasks on graph structured data, research on their explainability is becoming more critical and achieving significant progress. Although many methods are proposed to explain the predictions of GNNs, their focus is mainly on "how to generate explanations." However, other important research questions like "whether the GNN explanations are inaccurate," "what if the explanations are inaccurate," and "how to adjust the model to generate more accurate explanations" have gained little attention. Our previous GNN Explanation Supervision (GNES) framework demonstrated effectiveness on improving the reasonability of the local explanation while still keep or even improve the backbone GNNs model performance. In many applications instead of per sample explanations, we need to find global explanations which are reasonable and faithful to the domain data. Simply learning to explain GNNs locally is not an optimal solution to a global understanding of the model. To improve the explainability power of the GNES framework, we propose the Global GNN Explanation Supervision (GGNES) technique which uses a basic trained GNN and a global extension of the loss function used in the GNES framework. This GNN creates local explanations which are fed to a Global Logic-based GNN Explainer, an existing technique that can learn the global Explanation in terms of a logic formula. These two frameworks are then trained iteratively to generate reasonable global explanations. Extensive experiments demonstrate the effectiveness of the proposed model on improving the global explanations while keeping the performance similar or even increase the model prediction power.

6.
Acta Psychol (Amst) ; 248: 104393, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39018783

RESUMO

Collaborative programming is being increasingly used to overcome the difficulties of the individual programming process. In this study, we investigated the effect of collaborative perception on cognitive engagement and learning outcomes in collaborative programming. We used a quasi-experimental research to determine the differences in cognitive engagement and learning outcomes of three groups with different levels of collaborative perception. The findings highlight several important conclusions. First, there were significant differences in cognitive engagement and learning outcomes across collaborative perception groups. Students with high levels of collaborative perception demonstrate more comprehensive and diverse cognitive engagement, resulting in higher learning outcomes compared to those with lower perception. Second, students in the low collaborative perception group had more Clarification-Elaboration cognitive connections, and students in the high collaborative perception group had stronger Clarification-Positioning and Clarification-Verification cognitive connections. Third, collaborative perception positively moderated the relationship between cognitive engagement and learning outcomes. In particular, three cognitive engagement, Clarification, Elaboration, and Positioning, had a greater impact on performance when moderated by collaborative perceptions. These findings have practical implications for educators and course designers, emphasizing the importance of considering students' collaborative perception when forming groups and promoting effective collaborative programming.

7.
Neurosurg Rev ; 47(1): 351, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046673

RESUMO

To explore safe and reliable strategies and outcomes of endovascular procedures in the treatment of posterior inferior cerebellar artery (PICA) aneurysms. Retrospectively reviewed and analyzed the cases of PICA aneurysms that undergone endovascular therapy from July 2017 through January 2022 in our neurosurgical center, as well as outcomes of long-term follow-up. Total 24 cases were enrolled. Majority of the PICA aneurysms (87.5%, 21/24) presented initially with subarachnoid hemorrhage (SAH) and only 3 cases were not ruptured when they were clinically diagnosed as PICA aneurysms. The patients were endovascularly given either aneurysm occlusion with selective coils (12 cases), embolization of aneurysms and parent arteries (7 cases: 3 cases with coils and 4 cases with Onyx liquid embolic agent), or stent-assisted coiling of the aneurysms (5 cases). One patient, who had comorbidity of intracranial hemorrhage and severe cerebral vasospasm, declined further post-surgery therapy, and discharged from the hospital with anticipation of poor outcome. The rest 23 patients were followed up for 3-24 months with a recurrence rate of 17.4% (4/23). Endovascular procedure of embolizing PICA aneurysms with selective coils or stent-assisted coils is feasible, safe, and reliable. Simplified embolization of the aneurysms or occlusion of the parent artery is recommended as the first choice for the ruptured and bleeding PICA aneurysms.


Assuntos
Embolização Terapêutica , Procedimentos Endovasculares , Aneurisma Intracraniano , Humanos , Pessoa de Meia-Idade , Masculino , Feminino , Aneurisma Intracraniano/cirurgia , Aneurisma Intracraniano/terapia , Procedimentos Endovasculares/métodos , Adulto , Idoso , Resultado do Tratamento , Embolização Terapêutica/métodos , Estudos Retrospectivos , Hemorragia Subaracnóidea/cirurgia , Aneurisma Roto/cirurgia , Stents , Cerebelo/irrigação sanguínea
8.
Mol Immunol ; 173: 40-52, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39053388

RESUMO

HIV-1 chronically infects host CD4+ T lymphocytes and further affects a variety of immune cells, including CD8+ T cells. In our previous study, by analyzing unbiased high-dimensional single-cell RNA-seq data (scRNA-seq), we found that the frequency of GZMK+CD8+ T cells expressing granzyme K (GZMK) was increased in people living with HIV-1 (PLWHs). However, the phenotypic and functional characteristics of these cells in chronic HIV-1 infection and their correlation with disease are not well understood. In this study, we conducted a comprehensive analysis of scRNA-seq and matched T-cell receptor repertoire (TCR) sequencing data to delve into the characterizations of GZMK+CD8+ T cells, which was further validated by flow cytometry. We observed heterogeneity within the GZMK+CD8+ T cells, which could be further subdivided into a GZMK+GZMB- subset and a GZMK+GZMB+ subset, with the latter being significantly enriched in PLWHs. The GZMK+GZMB+ cells are a unique subset within CD8+ T cells, characterized by high proliferation, activation, inflammatory response, clone transition, etc., and are one of the differentiation endpoints by pseudotemporal analysis of CD8+αß T cells. Despite being predominantly composed of effector memory T cells (Tem), similar to the GZMK+GZMB- subset, the GZMK+GZMB+ subset exhibits differentiation at a later stage than the GZMK+GZMB- subset. We also observed that the frequency/count of GZMK+GZMB+CD8+ T cells was negatively correlated with CD4/CD8 ratio, and positively correlated with HIV DNA, IP-10, and MIG levels in PLWHs. In vitro experiments demonstrate that GZMK can potentiate the stimulatory effects of lipopolysaccharide (LPS) on THP-1 macrophages via the TLR-4 pathway, significantly enhancing the secretion of IP-10, MIG, and MCP-1, as well as increasing the proportion of TNF-α+ cells. In conclusion, in PLWHs, GZMK+GZMB+CD8+ T cells are a highly reactive and inflammatory-inducing subset that may be associated with systemic inflammation.

9.
Chem Sci ; 15(29): 11311-11320, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39055035

RESUMO

Homogeneous gold catalysis has attracted much recent attention due to diverse activation modes of gold(i) towards unsaturated organic groups. Because of attractive aurophilic interaction, structural transformations of metalated species into high nuclear clusters are often proposed in gold catalysis, while to date little is known about their assembly behaviors and catalytic activity. In this work, based on stoichiometric Au(i)-mediated enyne cyclization reactions, we achieve a discrete vicinal dicarbanion-centered Au4 intermediate and three assembled Au11, Au28, and Au14 clusters held together by several aryl dicarbanions. Spectral monitoring, kinetic and theoretical investigations confirm that these discrete and assembled intermediates display four different pathways upon catalyzing the cyclization reaction of the same 1,5-enyne substrate. The discrete Au4 cluster undergoes a full protodeauration process to generate active [Au(PPh3)]+ species for catalytic use. In contrast, the net-like Au11 cluster experiences a substrate-induced dissociation to generate a semi-stable Au10 unit and an active [alkyne-Au(PPh3)]+ fragment for further transformation. The dumbbell-like Au28 cluster is prone to cleavage of the central Au-Au linkage and each Au14 moiety exposes a coordination unsaturated site to activate a substrate molecule. However, the synthetic closed-Au14 cluster with full ligand protection is no longer catalytically active.

10.
Int J Biol Macromol ; 276(Pt 2): 133973, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39032877

RESUMO

The protein-ligand binding frequently occurs in living organisms and plays a crucial role in the execution of the functions of proteins and drugs. It is also an indispensable part of drug discovery and screening. While the methods for investigating protein-ligand binding are diverse, each has its own objectives, strengths, and limitations, which all influence the choice of method. Many studies concentrate on one or a few specific methods, suggesting that comprehensive summaries are lacking. Therefore in this review, these methods are comprehensively summarized and are discussed in detail: prediction and simulation methods, thermal and thermodynamic methods, spectroscopic methods, methods of determining three-dimensional structures of the complex, mass spectrometry-based methods and others. It is also important to integrate these methods based on the specific objectives of the research. With the aim of advancing pharmaceutical research, this review seeks to deepen the understanding of the protein-ligand binding process.

11.
Cancer Rep (Hoboken) ; 7(7): e2136, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39041645

RESUMO

BACKGROUND: Glioma is the most prevalent pediatric central nervous system malignancy. RAN, member RAS oncogene family (RAN), is a key signaling molecule that regulates the polymerization of microtubules during mitosis. RAN binding protein 2 (RANBP2) is involved in DNA replication, mitosis, metabolism, and tumorigenesis. The effects of RAN and RANBP2 gene polymorphisms on glioma susceptibility in Chinese children are currently unknown. AIMS: This study aimed to evaluate the association between RAN and RANBP2 gene polymorphisms and glioma susceptibility in Chinese children. METHODS AND RESULTS: We recruited 191 patients with glioma and 248 children without cancer for this case-control study. Polymerase chain reaction-based TaqMan was applied to gene sequencing and typing. Logistic regression model-calculated odds ratio and 95% confidence interval were used to verify whether the gene polymorphisms (RAN rs56109543 C>T, rs7132224 A>G, rs14035 C>T, and RANBP2 rs2462788 C>T) influence glioma susceptibility. Based on age, gender, tumor subtype, and clinical stage, stratified analyses of risk and protective genotypes were conducted. p values for mutant genotype analyses were all >0.05, indicating no significant correlation between these gene polymorphisms and glioma risk. CONCLUSION: RAN and RANBP2 gene polymorphisms were not found to be statistically significantly associated with glioma susceptibility in Chinese children. Other potential functional gene polymorphism loci of RAN and RANBP2 will need to be evaluated in the search for novel glioma biomarkers.


Assuntos
Neoplasias Encefálicas , Predisposição Genética para Doença , Glioma , Chaperonas Moleculares , Complexo de Proteínas Formadoras de Poros Nucleares , Proteína ran de Ligação ao GTP , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Estudos de Casos e Controles , China/epidemiologia , População do Leste Asiático/genética , Genótipo , Glioma/genética , Glioma/patologia , Chaperonas Moleculares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Polimorfismo de Nucleotídeo Único , Proteína ran de Ligação ao GTP/genética
12.
ACS Appl Mater Interfaces ; 16(29): 37896-37905, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39010647

RESUMO

The selective oxidation of alcohols into aldehydes is a basic and significant procedure, with great potential for scientific research and industrial applications. However, as an important factor in the C(sp3)-H activation process, high selectivity is generally difficult to achieve due to the fact that the more easily activated properties of aldehydes are compared to alcohols. Herein, by the ingenious decoration of eosin Y into a Zr-based metal-organic framework (MOF-808), EY@MOF-808 was prepared as a selectivity regulator for the aerobic oxidation of the benzyl alcohols into corresponding aldehydes, possessing applicability for the benzylic alcohols with various substituents. By anchoring eosin Y on Zr6O4(OH)4 clusters of MOF-808 and maintaining open metal nodes with selective binding effects, the benzyl alcohol substrates were selectively coordinated to the unsaturated metal clusters adjacent to eosin Y, which ensured that the excited eosin Y rapidly activated substrates to generate carbon radicals by the hydrogen atom transfer (HAT) process. The rapid electron transfer (ET) simultaneously produced reactive oxygen species (O2•-) and then a combination of both to further promote the generation of benzaldehydes. The weak interaction of benzaldehydes with the skeleton allowed it to dissociate rapidly, thus preventing overoxidation. Under the catalysis of EY@MOF-808, the selectivity of various benzaldehydes was more than 99%. In contrast, eosin Y gave only benzoic acid products under the same conditions, which demonstrated the superiority of regulatory selectivity of EY@MOF-808. Taking advantage of the heterogeneity of the MOF, EY@MOF-808 was recycled four times without a decrease in its selectivity and avoided the quenching effect of eosin Y. The organic functional units postdecorated MOF-based photocatalyst strategy exhibits a promising new perspective approach to sustainably regulating the selectivity of inert oxidation.

13.
Transl Vis Sci Technol ; 13(7): 16, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39042048

RESUMO

Purpose: The purpose of this study was to investigate the ocular morphological characteristics of Col4a3-/- mice as a model of Alport syndrome (AS) and the potential pathogenesis. Methods: The expression of collagen IV at 8, 12, and 21 weeks of age was evaluated by immunohistochemistry in wild-type (WT) and Col4a3-/- mice. Hematoxylin and eosin (H&E) staining and thickness measurements were performed to assess the thickness of anterior lens capsule and retina. Ultrastructure analysis of corneal epithelial basement membrane, anterior lens capsule, internal limiting membrane (ILM), and retinal pigment epithelium (RPE) basement membrane was performed using transmission electron microscopy. Finally, Müller cell activation was evaluated by glial fibrillary acidic protein (GFAP) expression. Results: Collagen IV was downregulated in the corneal epithelial basement membrane and ILM of Col4a3-/- mice. The hemidesmosomes of Col4a3-/- mice corneal epithelium became flat and less electron-dense than those of the WT group. Compared with those of the WT mice, the anterior lens capsules of Col4a3-/- mice were thinner. Abnormal structure was detected at the ILM Col4a3-/- mice, and the basal folds of the RPE basement membrane in Col4a3-/- mice were thicker and shorter. The retinas of Col4a3-/- mice were thinner than those of WT mice, especially within 1000 µm away from the optic nerve. GFAP expression enhanced in each age group of Col4a3-/- mice. Conclusions: Our results suggested that Col4a3-/- mice exhibit ocular anomalies similar to patients with AS. Additionally, Müller cells may be involved in AS retinal anomalies. Translational Relevance: This animal model could provide an opportunity to understand the underlying mechanisms of AS ocular disorders and to investigate potential new treatments.


Assuntos
Membrana Basal , Colágeno Tipo IV , Modelos Animais de Doenças , Camundongos Knockout , Nefrite Hereditária , Animais , Nefrite Hereditária/patologia , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Colágeno Tipo IV/deficiência , Camundongos , Membrana Basal/metabolismo , Membrana Basal/patologia , Membrana Basal/ultraestrutura , Epitélio Pigmentado da Retina/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/ultraestrutura , Microscopia Eletrônica de Transmissão , Camundongos Endogâmicos C57BL , Cápsula do Cristalino/metabolismo , Cápsula do Cristalino/patologia , Cápsula do Cristalino/ultraestrutura , Epitélio Corneano/patologia , Epitélio Corneano/ultraestrutura , Epitélio Corneano/metabolismo , Proteína Glial Fibrilar Ácida/metabolismo , Proteína Glial Fibrilar Ácida/genética , Retina/patologia , Retina/metabolismo , Retina/ultraestrutura , Autoantígenos/genética , Autoantígenos/metabolismo , Células Ependimogliais/patologia , Células Ependimogliais/metabolismo , Células Ependimogliais/ultraestrutura , Imuno-Histoquímica , Masculino
14.
J Colloid Interface Sci ; 676: 378-395, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032420

RESUMO

Glioma is a prevalent brain malignancy associated with poor prognosis. Although chemotherapy serves as the primary treatment for brain tumors, its effectiveness is hindered by the limited ability of drugs to traverse the blood-brain barrier (BBB) and the development of drug resistance linked to tumor hypoxia. Herein, we report the creation of hybrid camouflaged multifunctional nanovesicles comprising membranes of tumor C6 cells (mT) and bacterial outer membrane vesicles (OMVs) and co-loaded with manganese dioxide nanoparticles (MnO2 NPs) and doxorubicin (DOX) to synergistically enhance the chemotherapy/chemodynamic therapy (CDT) of glioma. Owing to OMV-mediated BBB penetration and mT-inherited tumor-homing properties, MnO2-DOX@mT/OMVs can penetrate the BBB and enhance the tumor cell-specific uptake of DOX via "proton sponge effect"-mediated lysosomal escape. This enhances the apoptotic effect induced by DOX and minimizing DOX-associated cardiotoxicity by facilitating the accumulation of DOX at the tumor site. Furthermore, the MnO2 NPs in MnO2-DOX@mT/OMVs can generate potent CDT by accelerating the Fenton-like reaction with DOX-generated H2O2 and achieving glutathione (GSH)-depletion-induced glutathione peroxidase 4 (GPX4) inactivation. These results showed that MnO2-DOX@mT/OMVs, designed for brain tumor targeting, significantly inhibited tumor growth and exhibited favorable biological safety. This innovative approach offers the augmentation of anticancer treatment efficacy via a potential combination of chemotherapy and CDT.

15.
Biochem Biophys Res Commun ; 729: 150344, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38976946

RESUMO

Anthocyanins, found in various pigmented plants as secondary metabolites, represent a class of dietary polyphenols known for their bioactive properties, demonstrating health-promoting effects against several chronic diseases. Among these, cyanidin-3-O-glucoside (C3G) is one of the most prevalent types of anthocyanins. Upon consumption, C3G undergoes phases I and II metabolism by oral epithelial cells, absorption in the gastric epithelium, and gut transformation (phase II & microbial metabolism), with limited amounts reaching the bloodstream. Obesity, characterized by excessive body fat accumulation, is a global health concern associated with heightened risks of disability, illness, and mortality. This comprehensive review delves into the biodegradation and absorption dynamics of C3G within the gastrointestinal tract. It meticulously examines the latest research findings, drawn from in vitro and in vivo models, presenting evidence underlining C3G's bioactivity. Notably, C3G has demonstrated significant efficacy in combating obesity, by regulating lipid metabolism, specifically decreasing lipid synthesis, increasing fatty acid oxidation, and reducing lipid accumulation. Additionally, C3G enhances energy homeostasis by boosting energy expenditure, promoting the activity of brown adipose tissue, and stimulating mitochondrial biogenesis. Furthermore, C3G shows potential in managing various prevalent obesity-related conditions. These include cardiovascular diseases (CVD) and hypertension through the suppression of reactive oxygen species (ROS) production, enhancement of endogenous antioxidant enzyme levels, and inhibition of the nuclear factor-kappa B (NF-κB) signaling pathway and by exercising its cardioprotective and vascular effects by decreasing pulmonary artery thickness and systolic pressure which enhances vascular relaxation and angiogenesis. Type 2 diabetes mellitus (T2DM) and insulin resistance (IR) are also managed by reducing gluconeogenesis via AMPK pathway activation, promoting autophagy, protecting pancreatic ß-cells from oxidative stress and enhancing glucose-stimulated insulin secretion. Additionally, C3G improves insulin sensitivity by upregulating GLUT-1 and GLUT-4 expression and regulating the PI3K/Akt pathway. C3G exhibits anti-inflammatory properties by inhibiting the NF-κB pathway, reducing pro-inflammatory cytokines, and shifting macrophage polarization from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype. C3G demonstrates antioxidative effects by enhancing the expression of antioxidant enzymes, reducing ROS production, and activating the Nrf2/AMPK signaling pathway. Moreover, these mechanisms also contribute to attenuating inflammatory bowel disease and regulating gut microbiota by decreasing Firmicutes and increasing Bacteroidetes abundance, restoring colon length, and reducing levels of inflammatory cytokines. The therapeutic potential of C3G extends beyond metabolic disorders; it has also been found effective in managing specific cancer types and neurodegenerative disorders. The findings of this research can provide an important reference for future investigations that seek to improve human health through the use of naturally occurring bioactive compounds.

17.
Sci Rep ; 14(1): 15144, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956301

RESUMO

Porous ceramics were synthesized using porcelain tile polishing residue (PTPR) and slaked lime (Ca(OH)2) as a reinforcing agent through a hydrothermal autoclaving method. The process parameters, including the quantity of slaked lime added, the hydrothermal autoclaving temperature, and the reaction duration, were optimized meticulously. The composition, structure, thermal and physical properties of the samples were thoroughly analyzed via Brunauer-Emmett-Teller (BET) measurements, powder X-ray diffraction (PXRD), and scanning electron microscopy (SEM). The results indicated that the incorporation of slaked lime and hydrothermal autoclaving led to the formation of calcium silicate hydrate, which corresponded with an enhancement in the strength of the sample. Notably, when the quantity of slaked lime added was optimized at 30 wt%, the formation of tobermorite (5CaO·6SiO2·5H2O) was detected. At a hydrothermal autoclaving temperature of 150 °C, the formation of only sheet-like calcium silicate hydrate was observed. In contrast, at an elevated temperature of 180 °C and 210 °C, needle-like tobermorite was successfully synthesized. The porous ceramic with the most favorable structure was obtained through autoclaving at 180 °C for 10 h with 30 wt% slaked lime, exhibiting a total pore volume of 0.11 mL/g, a specific surface area of 26.35 m2/g, and a mesoporous volume fraction of 90.40%.

18.
Eur J Haematol ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38993150

RESUMO

OBJECTIVES: Cluster of differentiation 38 (CD38) is a key target on multiple myeloma (MM) cells. This multi-centre, Phase 1, single-agent study (NCT04000282) investigated SAR442085, a novel fragment crystallisable (Fc)-modified anti-CD38 monoclonal antibody (mAb), with enhanced affinity towards Fc-gamma receptor on effector cells in patients with relapsed and/or refractory (RR) MM. METHODS: This study comprised two parts: Part-A (dose-escalation involving anti-CD38 mAb pre-treated and naïve patients) and Part-B (dose expansion). Primary endpoints were maximum tolerated dose and recommended Phase 2 dose (RP2D). RESULTS: Thirty-seven heavily pre-treated patients were treated in Part A. Part-B (dose-expansion) was not studied. Seven dose-limiting toxicities were reported at DL3, DL5, DL6, and DL7. RP2D was determined to be 5-7·5 mg/kg. Most common treatment-emergent adverse events were infusion-related reactions in 70·3% (26/37) patients. Grade ≥3 thrombocytopenia was reported in 48·6% (18/37). Overall response rate was 70% in anti-CD38 mAb naïve and 4% in anti-CD38 pre-treated patients, with a median progression-free survival of 7·62 (95%CI: 2·858; not calculable) months and 2·79 (95%CI: 1·150; 4·172) months and, respectively. CONCLUSIONS: The efficacy of SAR442085 was promising in anti-CD38 mAb naïve patients but did not extend to the larger cohort of anti-CD38 mAb pre-treated patients. This observation, along with transient high-grade thrombocytopenia, could potentially limit its clinical use.

19.
Arch Virol ; 169(8): 163, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990396

RESUMO

Antigenically divergent H7N9 viruses pose a potential threat to public health, with the poor immunogenicity of candidate H7N9 vaccines demonstrated in clinical trials underscoring the urgent need for more-effective H7N9 vaccines. In the present study, mice were immunized with various doses of a suspended-MDCK-cell-derived inactivated H7N9 vaccine, which was based on a low-pathogenic H7N9 virus, to assess cross-reactive immunity and cross-protection against antigenically divergent H7N9 viruses. We found that the CRX-527 adjuvant, a synthetic TLR4 agonist, significantly enhanced the humoral immune responses of the suspended-MDCK-cell-derived H7N9 vaccine, with significant antigen-sparing and immune-enhancing effects, including robust virus-specific IgG, hemagglutination-inhibiting (HI), neuraminidase-inhibiting (NI), and virus-neutralizing (VN) antibody responses, which are crucial for protection against influenza virus infection. Moreover, the CRX-527-adjuvanted H7N9 vaccine also elicited cross-protective immunity and cross-protection against a highly pathogenic H7N9 virus with a single vaccination. Notably, NI and VN antibodies might play an important role in cross-protection against lethal influenza virus infections. This study showed that a synthetic TLR4 agonist adjuvant has a potent immunopotentiating effect, which might be considered worth further development as a means of increasing vaccine effectiveness.


Assuntos
Anticorpos Antivirais , Imunidade Humoral , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Camundongos Endogâmicos BALB C , Infecções por Orthomyxoviridae , Receptor 4 Toll-Like , Vacinas de Produtos Inativados , Animais , Subtipo H7N9 do Vírus da Influenza A/imunologia , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/imunologia , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/administração & dosagem , Camundongos , Anticorpos Antivirais/imunologia , Cães , Células Madin Darby de Rim Canino , Vacinas de Produtos Inativados/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/imunologia , Feminino , Anticorpos Neutralizantes/imunologia , Proteção Cruzada/imunologia , Adjuvantes Imunológicos/administração & dosagem , Adjuvantes Imunológicos/farmacologia , Adjuvantes de Vacinas , Imunoglobulina G/imunologia , Imunoglobulina G/sangue
20.
Adv Mater ; : e2406193, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39003617

RESUMO

Methylammonium lead tribromide (MAPbBr3) stands out as the most easily grown wide-band-gap metal halide perovskite. It is a promising semiconductor for room-temperature gamma-ray (γ-ray) spectroscopic detectors, but no operational devices are realized. This can be largely attributed to a lack of understanding of point defects and their influence on detector performance. Here, through a combination of crystal growth design and defect characterization, including positron annihilation and impedance spectroscopy, the presence of specific point defects are identified and correlated to detector performance. Methylammonium (MA) vacancies, MA interstitials, and Pb vacancies are identified as the dominant charge-trapping defects in MAPbBr3 crystals, while Br vacancies caused doping. The addition of excess MABr reduces the MA and Br defects and so enables the detection of energy-resolved γ-ray spectra using a MAPbBr3 single-crystal device. Interestingly, the addition of formamidinium (FA) cations, which converted to methylformamidinium (MFA) cations by reaction with MA+ during crystal growth further reduced MA defects. This enabled an energy resolution of 3.9% for the 662 keV 137Cs line using a low bias of 100 V. The work provides direction toward enabling further improvements in wide-bandgap perovskite-based device performance by reducing detrimental defects.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA