Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 51(19): 10551-10567, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37713613

RESUMO

For DNA replication initiation in Bacteria, replication initiation proteins bind to double-stranded DNA (dsDNA) and interact with single-stranded DNA (ssDNA) at the replication origin. The structural-functional relationship of the nucleoprotein complex involving initiator proteins is still elusive and different models are proposed. In this work, based on crosslinking combined with mass spectrometry (MS), the analysis of mutant proteins and crystal structures, we defined amino acid residues essential for the interaction between plasmid Rep proteins, TrfA and RepE, and ssDNA. This interaction and Rep binding to dsDNA could not be provided in trans, and both are important for dsDNA melting at DNA unwinding element (DUE). We solved two crystal structures of RepE: one in a complex with ssDNA DUE, and another with both ssDNA DUE and dsDNA containing RepE-specific binding sites (iterons). The amino acid residues involved in interaction with ssDNA are located in the WH1 domain in stand ß1, helices α1 and α2 and in the WH2 domain in loops preceding strands ß1' and ß2' and in these strands. It is on the opposite side compared to RepE dsDNA-recognition interface. Our data provide evidence for a loop-back mechanism through which the plasmid replication initiator molecule accommodates together dsDNA and ssDNA.


Assuntos
DNA de Cadeia Simples , Proteínas de Ligação a DNA , DNA de Cadeia Simples/genética , Proteínas de Ligação a DNA/metabolismo , Replicação do DNA , Plasmídeos/genética , DNA/genética , DNA/metabolismo , Aminoácidos/genética
2.
Nucleic Acids Res ; 49(6): 3394-3408, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660784

RESUMO

An essential feature of replication initiation proteins is their ability to bind to DNA. In this work, we describe a new domain that contributes to a replication initiator sequence-specific interaction with DNA. Applying biochemical assays and structure prediction methods coupled with DNA-protein crosslinking, mass spectrometry, and construction and analysis of mutant proteins, we identified that the replication initiator of the broad host range plasmid RK2, in addition to two winged helix domains, contains a third DNA-binding domain. The phylogenetic analysis revealed that the composition of this unique domain is typical within the described TrfA-like protein family. Both in vitro and in vivo experiments involving the constructed TrfA mutant proteins showed that the newly identified domain is essential for the formation of the protein complex with DNA, contributes to the avidity for interaction with DNA, and the replication activity of the initiator. The analysis of mutant proteins, each containing a single substitution, showed that each of the three domains composing TrfA is essential for the formation of the protein complex with DNA. Furthermore, the new domain, along with the winged helix domains, contributes to the sequence specificity of replication initiator interaction within the plasmid replication origin.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Transativadores/química , Transativadores/metabolismo , Modelos Moleculares , Ligação Proteica , Domínios Proteicos
3.
Plasmid ; 76: 72-8, 2014 11.
Artigo em Inglês | MEDLINE | ID: mdl-25454070

RESUMO

DNA replication initiation has been well-characterized; however, studies in the past few years have shown that there are still important discoveries to be made. Recent publications concerning the bacterial DnaA protein have revealed how this replication initiator, via interaction with specific sequences within the origin region, causes local destabilization of double stranded DNA. Observations made in the context of this bacterial initiator have also been converging with those recently made for plasmid Rep proteins. In this mini review we discuss the relevance of new findings for the RK2 plasmid replication initiator, TrfA, with regard to new data on the structure of complexes formed by the chromosomal replication initiator DnaA. We discuss structure-function relationships of replication initiation proteins.


Assuntos
Proteínas de Escherichia coli/metabolismo , Plasmídeos/genética , Origem de Replicação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA