Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 71(8): 1649-1659, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35621990

RESUMO

Preclinical rodent and nonhuman primate models investigating maternal obesity have highlighted the importance of the intrauterine environment in the development of insulin resistance in offspring; however, it remains unclear if these findings can be translated to humans. To investigate possible intrauterine effects in humans, we isolated mesenchymal stem cells (MSCs) from the umbilical cord tissue of infants born to mothers of normal weight or mothers with obesity. Insulin-stimulated glycogen storage was determined in MSCs undergoing myogenesis in vitro. There was no difference in insulin action based on maternal obesity. However, maternal free fatty acid (FFA) concentration, cord leptin, and intracellular triglyceride content were positively correlated with insulin action. Furthermore, MSCs from offspring born to mothers with elevated FFAs displayed elevated activation of the mTOR signaling pathway. Taken together, these data suggest that infants born to mothers with elevated lipid availability have greater insulin action in MSCs, which may indicate upregulation of growth and lipid storage pathways during periods of maternal overnutrition.


Assuntos
Células-Tronco Mesenquimais , Obesidade Materna , Animais , Ácidos Graxos não Esterificados/metabolismo , Feminino , Humanos , Lactente , Insulina/metabolismo , Insulina Regular Humana , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Gravidez
2.
Nat Commun ; 9: 16180, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799013

RESUMO

This corrects the article DOI: 10.1038/ncomms15742.

3.
Sci Rep ; 8(1): 5448, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615706

RESUMO

Four CaMKII isoforms are encoded by distinct genes, and alternative splicing within the variable linker-region generates additional diversity. The α and ß isoforms are largely brain-specific, where they mediate synaptic functions underlying learning, memory and cognition. Here, we determined the α and ß splice-variant distribution among different mouse brain regions. Surprisingly, the nuclear variant αB was detected in all regions, and even dominated in hypothalamus and brain stem. For CaMKIIß, the full-length variant dominated in most regions (with higher amounts of minor variants again seen in hypothalamus and brain stem). The mammalian but not fish CaMKIIß gene lacks exon v3N that encodes the nuclear localization signal in αB, but contains three exons not found in the CaMKIIα gene (exons v1, v4, v5). While skipping of exons v1 and/or v5 generated the minor splice-variants ß', ße and ße', essentially all transcripts contained exon v4. However, we instead detected another minor splice-variant (now termed ßH), which lacks part of the hub domain that mediates formation of CaMKII holoenzymes. Surprisingly, in an optogenetic cellular assay of protein interactions, CaMKIIßH was impaired for binding to the ß hub domain, but still bound CaMKIIα. This provides the first indication for isoform-specific differences in holoenzyme formation.


Assuntos
Encéfalo/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Holoenzimas/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Éxons/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Humanos , Camundongos , Gravidez , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos
4.
Cell Rep ; 19(11): 2231-2243, 2017 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-28614711

RESUMO

The death-associated protein kinase 1 (DAPK1) is a potent mediator of neuronal cell death. Here, we find that DAPK1 also functions in synaptic plasticity by regulating the Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII). CaMKII and T286 autophosphorylation are required for both long-term potentiation (LTP) and depression (LTD), two opposing forms of synaptic plasticity underlying learning, memory, and cognition. T286-autophosphorylation induces CaMKII binding to the NMDA receptor (NMDAR) subunit GluN2B, which mediates CaMKII synaptic accumulation during LTP. We find that the LTP specificity of CaMKII synaptic accumulation is due to its LTD-specific suppression by calcineurin (CaN)-dependent DAPK1 activation, which in turn blocks CaMKII binding to GluN2B. This suppression is enabled by competitive DAPK1 versus CaMKII binding to GluN2B. Negative regulation of DAPK1/GluN2B binding by Ca2+/CaM results in synaptic DAPK1 removal during LTP but retention during LTD. A pharmacogenetic approach showed that suppression of CaMKII/GluN2B binding is a DAPK1 function required for LTD.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteínas Quinases Associadas com Morte Celular/metabolismo , Depressão Sináptica de Longo Prazo/fisiologia , Memória/fisiologia , Receptores de N-Metil-D-Aspartato/metabolismo , Sequência de Aminoácidos , Animais , Proteínas Quinases Associadas com Morte Celular/genética , Células HEK293 , Humanos , Potenciação de Longa Duração/fisiologia , Depressão Sináptica de Longo Prazo/genética , Camundongos , Plasticidade Neuronal/fisiologia , Fosforilação , Receptores de N-Metil-D-Aspartato/genética , Transfecção
5.
Nat Commun ; 8: 15742, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28589927

RESUMO

The Ca2+/calmodulin-dependent protein kinase II (CaMKII) assembles into large 12-meric holoenzymes, which is thought to enable regulatory processes required for synaptic plasticity underlying learning, memory and cognition. Here we used single particle electron microscopy (EM) to determine a pseudoatomic model of the CaMKIIα holoenzyme in an extended and activation-competent conformation. The holoenzyme is organized by a rigid central hub complex, while positioning of the kinase domains is highly flexible, revealing dynamic holoenzymes ranging from 15-35 nm in diameter. While most kinase domains are ordered independently, ∼20% appear to form dimers and <3% are consistent with a compact conformation. An additional level of plasticity is revealed by a small fraction of bona-fide 14-mers (<4%) that may enable subunit exchange. Biochemical and cellular FRET studies confirm that the extended state of CaMKIIα resolved by EM is the predominant form of the holoenzyme, even under molecular crowding conditions.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Animais , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Ativação Enzimática , Transferência Ressonante de Energia de Fluorescência , Humanos , Microscopia Eletrônica/métodos , Modelos Moleculares , Mutação , Fosforilação , Conformação Proteica , Domínios Proteicos , Multimerização Proteica , Ratos
6.
FEBS Lett ; 588(24): 4672-6, 2014 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-25447522

RESUMO

The Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) mediates physiological and pathological functions by its Ca(2+)-independent autonomous activity. Two novel mechanisms for generating CaMKII autonomy include oxidation and S-nitrosylation, the latter requiring both Cys280 and Cys289 amino acid residues in the brain-specific isoform CaMKIIα. Even though the other CaMKII isoforms have a different amino acid in the position homologous to Cys280, we show here that nitric oxide (NO)-signaling generated autonomy also for the CaMKIIß isoform. Furthermore, although oxidation of the Met280/281 residues is sufficient to generate autonomy for most CaMKII isoforms, oxidation-induced autonomy was also prevented by a Cys289-mutation in the CaMKIIα isoform. Thus, all CaMKII isoforms can be regulated by physiological NO-signaling, but CaMKIIα regulation by oxidation and S-nitrosylation is more stringent.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Óxido Nítrico/metabolismo , Sequência de Aminoácidos , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/química , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Células HEK293 , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Oxirredução , Estrutura Terciária de Proteína , Transdução de Sinais
7.
Neurosci Lett ; 488(2): 112-7, 2011 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-20849920

RESUMO

Restoration of autophagy represents a potential therapeutic target for neurodegenerative disorders, but factors that regulate autophagic flux are largely unknown. When deprived of trophic factors, cultured Purkinje neurons die by an autophagy associated cell death mechanism. The accumulation of autophagic vesicles and cell death of Purkinje neurons is inhibited by insulin-like growth factor, by a mechanism that enhances autophagic vesicle turnover. In this report, we identify Rab7 as an IGF-I regulated target during neuronal autophagy. Purkinje neurons transfected with EGFP-Rab7-WT and constitutively active EGFP-Rab7-Q67L contained few RFP-LC3 positive autophagosomes and little co-localization with GFP-Rab7 under control conditions. Upon induction of autophagy, RFP-LC3 positive autophagosomes increased and co-localized with GFP-Rab7. Conversely, expression of the dominant negative mutant EGFP-Rab7-T22N increased the accumulation of autophagosomes under control conditions, which accumulated even further during trophic factor withdrawal. There was no vesicular co-localization between Rab7-T22N and RFP-LC3 under control or trophic factor withdrawal conditions. During prolonged trophic factor withdrawal, a condition that leads to the accumulation of autophagic vesicles and cell death, Rab7 activity decreased significantly. IGF-I, added at the time of trophic factor withdrawal, prevented the deactivation of Rab7 and increased the interaction of Rab7 with its interacting protein (RILP), restoring autophagic flux. These results provide a novel mechanism by which IGF-I regulates autophagic flux during neuronal stress.


Assuntos
Autofagia/fisiologia , Proteínas de Transporte/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Células de Purkinje/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Western Blotting , Microscopia de Fluorescência , Fagossomos/metabolismo , Ratos , Ratos Sprague-Dawley , proteínas de unión al GTP Rab7
8.
Plant Cell ; 18(12): 3548-63, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17189341

RESUMO

Plant mitochondrial genomes exist in a natural state of heteroplasmy, in which substoichiometric levels of alternative mitochondrial DNA (mtDNA) molecules coexist with the main genome. These subgenomes either replicate autonomously or are created by infrequent recombination events. We found that Arabidopsis thaliana OSB1 (for Organellar Single-stranded DNA Binding protein1) is required for correct stoichiometric mtDNA transmission. OSB1 is part of a family of plant-specific DNA binding proteins that are characterized by a novel motif that is required for single-stranded DNA binding. The OSB1 protein is targeted to mitochondria, and promoter-beta-glucuronidase fusion showed that the gene is expressed in budding lateral roots, mature pollen, and the embryo sac of unfertilized ovules. OSB1 T-DNA insertion mutants accumulate mtDNA homologous recombination products and develop phenotypes of leaf variegation and distortion. The mtDNA rearrangements occur in two steps: first, homozygous mutants accumulate subgenomic levels of homologous recombination products; second, in subsequent generations, one of the recombination products becomes predominant. After the second step, the process is no longer reversible by backcrossing. Thus, OSB1 participates in controlling the stoichiometry of alternative mtDNA forms generated by recombination. This regulation could take place in gametophytic tissues to ensure the transmission of a functional mitochondrial genome.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Genes de Plantas , Células Germinativas/citologia , Mitocôndrias/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/isolamento & purificação , ATPases Mitocondriais Próton-Translocadoras/genética , Dados de Sequência Molecular , Mutagênese Insercional , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Raízes de Plantas/citologia , Ligação Proteica , Transporte Proteico , Recombinação Genética/genética , Solanum tuberosum
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA