Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38748306

RESUMO

Probiotics play a significant role in enhancing health, and they are well known for bacteriocins production. Evaluating probiotics' whole-genome sequence provides insights into their consumption outcomes. Thus, genomic studies have a significant role in assessing the safety of probiotics more in-depth and offer valuable information regarding probiotics' functional diversity, metabolic pathways, and health-promoting mechanisms. Marine Pediococcus pentosaceus E3, isolated from shrimp gut, exhibited beneficial properties, indicating its potential as a probiotic candidate. Phenotypically, E3 strain was susceptible to most antibiotics assessed, tolerant to low pH and high bile salt conditions, and revealed no hemolysin activity. Interestingly, E3-neutralized CFS revealed significant antibacterial activity against pathogens under investigation. Therefore, the concentrated CFS was prepared and evaluated as a natural biopreservative and showed outstanding antimicrobial activity. Furthermore, integrated-based genome assessment has provided insight into probiotic characteristics at the genomic level. Whole-genome sequencing analysis revealed that the E3 genome possesses 1805 protein-coding genes, and the genome size was about 1.8 Mb with a G + C content of 37.28%. Moreover, the genome revealed the absence of virulence factors and clinically related antibiotic genes. Moreover, several genes consistent with probiotic microorganisms' features were estimated in the genome, including stress response, carbohydrate metabolism, and vitamin biosynthesis. In addition, several genes associated with survival and colonization within the gastrointestinal tract were also detected across the E3 genome. Therefore, the findings suggest that insights into the genetic characteristics of E3 guarantee the safety of the strain and facilitate future development of E3 isolate as a health-promoting probiotic and source of biopreservative.

2.
Microb Cell Fact ; 23(1): 60, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388439

RESUMO

The marine black yeasts are characterized by the production of many novel protective substances. These compounds increase their physiological adaptation to multi-extreme environmental stress. Hence, the exopolysaccharide (EPS) producing marine black yeast SAHE was isolated in this study. It was molecularly identified as Hortaea werneckii (identity 98.5%) through ITS1 and ITS4 gene sequencing analysis. The physicochemical properties of the novel SAHE-EPS were investigated through FTIR, GC-MS, TGA, ESM, and EDX analysis, revealing its heteropolysaccharide nature. SAHE-EPS was found to be thermostable and mainly consists of sucrose, maltose, cellobiose, lactose, and galactose. Furthermore, it exhibited an amorphous texture and irregular porous surface structure. SAHE-EPS showed significant antiradical activity, as demonstrated by the DPPH radical scavenging assay, and the IC50 was recorded to be 984.9 µg/mL. In addition, SAHE-EPS exhibited outstanding anticancer activity toward the A549 human lung cancer cell line (IC50 = 22.9 µg/mL). Conversely, it demonstrates minimal cytotoxicity toward the WI-38 normal lung cell line (IC50 = 203 µg/mL), which implies its safety. This study represents the initial attempt to isolate and characterize the chemical properties of an EPS produced by the marine black yeast H. werneckii as a promising antiradical and anticancer agent.


Assuntos
Ascomicetos , Saccharomyces cerevisiae , Humanos
3.
BMC Microbiol ; 23(1): 231, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612642

RESUMO

BACKGROUND: In recent years, the demand for innovative antimicrobial agents has grown, considering the growing problem of antibiotic resistance in aquaculture. Adult Apis mellifera honeybees' gut represents an outstanding habitat to isolate novel lactic acid bacteria (LAB) able to produce prominent antimicrobial agents. METHODS: In the current study, twelve LAB were isolated and purified from the gut of adult Apis mellifera. The isolates were screened for exopolysaccharide (EPS) production. The most promising isolate BE11 was identified biochemically and molecularly using 16 S rRNA gene sequence analysis as Enterococcus sp. BE11 was used for the mass production of EPS. The partially purified BE11-EPS features were disclosed by its physicochemical characterization. Moreover, the antimicrobial activity of BE11 cell free supernatant (CFS) and its EPS was investigated against some fish pathogens namely, Pseudomonas fluorescens, Streptococcus agalactiae, Aeromonas hydrophila, Vibrio sp. and Staphylococcus epidermidis using well-cut diffusion method. RESULTS: The physicochemical characterization of BE11-EPS revealed that the total carbohydrate content was estimated to be ~ 87%. FTIR and NMR analysis ascertained the presence of galactose and glucose residues in the EPS backbone. Moreover, the GC-MS analysis verified the heterogeneous nature of the produced BE11-EPS made up of different monosaccharide moieties: galactose, rhamnose, glucose, arabinose sugar derivatives, and glucuronic acid. BE11 CFS and its EPS showed promising antimicrobial activity against tested pathogens as the inhibition zone diameters (cm) ranged from 1.3 to 1.7 and 1.2-1.8, respectively. CONCLUSION: The bee gut-resident Enterococcus sp. BE11, CFS, and EPS were found to be promising antimicrobial agents against fish pathogens and biofilm producers affecting aquaculture. To the best of our knowledge, this is the first study to purify and make a chemical profile of an EPS produced by a member of the bee gut microbiota as a potential inhibitor for fish pathogens.


Assuntos
Galactose , Lactobacillales , Abelhas , Animais , Antibacterianos/farmacologia , Aeromonas hydrophila , Enterococcus , Peixes , Glucose
4.
Mar Drugs ; 21(1)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36662218

RESUMO

This study aims to obtain a novel probiotic strain adapted to marine habitats and to assess its antisepsis properties using a cecal ligation and puncture (CLP) model in rodents. The marine Enterococcus faecium EA9 was isolated from marine shrimp samples and evaluated for probiotic potential after phenotypical and molecular identification. In septic animals, hepatic and renal tissues were histologically and biochemically evaluated for inflammation and oxidative stress following the probiotic treatment. Moreover, gene expressions of multiple signaling cascades were determined using RT-PCR. EA9 was identified and genotyped as Enterococcus faecium with a 99.88% identity. EA9 did not exhibit any signs of hemolysis and survived at low pH and elevated concentrations of bile salts. Moreover, EA9 isolate had antibacterial activity against different pathogenic bacteria and could thrive in 6.5% NaCl. Septic animals treated with EA9 had improved liver and kidney functions, lower inflammatory and lipid peroxidation biomarkers, and enhanced antioxidant enzymes. The CLP-induced necrotic histological changes and altered gene expressions of IL-10, IL-1ß, INF-γ, COX-2, SOD-1, SOD-2, HO-1, AKT, mTOR, iNOS, and STAT-3 were abolished by the EA9 probiotic in septic animals. The isolate Enterococcus faecium EA9 represents a promising marine probiotic. The in vivo antisepsis testing of EA9 highlighted its potential and effective therapeutic approach.


Assuntos
Enterococcus faecium , Probióticos , Ratos , Animais , Fígado , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Probióticos/farmacologia
5.
BMC Microbiol ; 22(1): 174, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35799112

RESUMO

BACKGROUND: Phytoremediation is a green technology that removes heavy metal (HM) contamination from the environment by using HM plant accumulators. Among soil microbiota, plant growth promoting bacteria (PGPR) have a role influencing the metal availability and uptake. METHODS: This current study evaluates the plant growth promoting qualities of microbial flora isolated from rhizosphere, plant roots, and marine aquatic HMs polluted environments in Alexandria through several biochemical and molecular traits. Metal contents in both collected soils and plant tissues were measured. Transcript levels of marker genes (HMA3 and HMA4) were analyzed. RESULTS: Three terrestrial and one aquatic site were included in this study based on the ICP-MS identification of four HMs (Zn, Cd, Cu, and Ni) or earlier reports of HMs contamination. Using the VITEK2 bacterial identification system, twenty-two bacteria isolated from these loci were biochemically described. Pseudomonas and Bacillus were the most dominant species. Furthermore, the soil microbiota collected from the most contaminated HMs site with these two were able to enhance the Helianthus annuus L. hyper-accumulation capacity significantly. Specifically, sunflower plants cultivated in soils with HMs adapted bacteria were able to accumulate about 1.7-2.5-folds more Zn and Cd in their shoots, respectively. CONCLUSION: The influence of PGPR to stimulate crop growth under stress is considered an effective strategy. Overall, our findings showed that plants cultivated in HMs contaminated sites in the presence of PGPR were able to accumulate significant amounts of HMs in several plant parts than those cultivated in soils lacking microbiota.


Assuntos
Helianthus , Metais Pesados , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Helianthus/microbiologia , Metais Pesados/análise , Raízes de Plantas , Solo , Poluentes do Solo/análise
6.
Front Microbiol ; 13: 903363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35668753

RESUMO

Because of its safety, biological activities, and unique properties, exopolysaccharide (EPS) from lactic acid bacteria (LAB) has been developed as a potential biopolymer. A few studies have investigated the EPS produced by marine LAB. This study reports the wound healing activity of an EPS produced by a marine isolate identified as Lactiplantibacillus plantarum EI6, in addition to assessing L. plantarum EI6's probiotic properties. EI6 demonstrated promising antimicrobial activity against different pathogenic bacteria, as well as the ability to withstand stomach pH 3, tolerate 0.3% bile salt concentration, and exhibit no signs of hemolysis. Furthermore, EI6 was able to produce 270 mg/L of EPS upon growth for 48 h at 37°C in an MRS medium enriched with 1.0% of sucrose. The chemical features of the novel EI6-EPS were investigated: the UV-vis estimated a high carbohydrate content of ~91.5%, and the FTIR emphasized its polysaccharide nature by the characteristic hydroxyl, amide I, II, & III, and glycosidic linkage regions. The GC-MS and NMR analyses revealed the existence of five monosaccharides, namely, rhamnose, galactose, mannose, glucose, and arabinose, existing mainly in the pyranose form and linked together by α- and ß-glycosidic linkages. EI6-EPS was found to be safe (IC50 > 100 µg/ml) and induced human skin fibroblasts (HSF) proliferation and migration. These findings imply that EI6 can be used as a safe source of bioactive polymer in wound care.

7.
Probiotics Antimicrob Proteins ; 14(5): 934-946, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35750975

RESUMO

Psychobiotics are a novel class of probiotics with potential to confer mental wellness via production of neuroactive compounds such as gamma-aminobutyric acid (GABA). The demand for new biological sources of GABA has increased steadily. Therefore, the current study reports the isolation of 17 presumptive lactic acid bacteria (LAB) from marine samples and their screening for GABA synthesis from monosodium glutamate (MSG) using thin-layer chromatography (TLC). The isolate SH9 was selected as a high GABA producing strain. The GABA content of SH9 cell free supernatant (CFS) was quantitatively determined by high performance liquid chromatography (HPLC) to be 0.97 g/L. SH9 was identified biochemically and molecularly as Enterococcus faecium (identity 99%). Moreover, SH9 demonstrated promising probiotic potentials; it gave no signs of hemolysis and could survive at low pH values and high bile salt concentrations. It also exhibited antimicrobial activity against highly pathogenic strains and the ability to grow at 6.5% NaCl. In addition, SH9 CFS showed anti-inflammatory and antioxidant properties. The glutamate decarboxylase (GAD) gene was detected in SH9 by using specific primers. Product of 540 bp was obtained, sequenced, and analyzed (accession number: MW713382). The inferred amino acid sequence was 99.3% identical to Lactobacillus plantarum M-6 gadB gene. The findings of this study suggest that the marine isolate E. faecium SH9 could be used as a novel psychobiotics in the development of GABA rich healthy products.


Assuntos
Enterococcus faecium , Lactobacillus plantarum , Ácido gama-Aminobutírico , Enterococcus faecium/metabolismo , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Lactobacillus plantarum/metabolismo , Ácido gama-Aminobutírico/biossíntese
8.
Appl Biochem Biotechnol ; 194(7): 3097-3118, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35347670

RESUMO

In the current study, a significant amount of ulvan was extracted from Ulva lactuca collected from Alexandria coastline, Egypt, using a simple extraction method. According to the chemical analysis, the obtained polysaccharide content is estimated to be 36.50 g/100 g with a high sulfate content of 19.72%. Physio-chemically, the FTIR analysis confirmed the presence of sulfated groups attached to the carbohydrate backbone. The GC-MS results revealed the presence of various monosaccharides with relative abundances in the order: fucopyranose (22.09%) > L-rhamnose (18.17%) > L-fucose (17.46%) > rhamnopyranose (14.29%) > mannopyranose (8.59%) > α-D-glactopyranose (7.64%) > galactopyranose (6.14%) > ß-arabinopyranose (5.62%). In addition, the SEM-EDX depicted an amorphous architecture with a majority wt% for the elements of C, O, and S. The partially purified ulvan demonstrated potent antimicrobial activity against some fish and human pathogenic microbes. The inhibition zone diameter ranged from 11 to 18 mm. On the other hand, the prepared ulvan-chitosan hydrogel significantly improved the antimicrobial activity as the inhibition zone diameter ranged from 12 to 20. Moreover, when compared to the controls, the extracted ulvan demonstrated anti-fouling properties and successfully disrupted the biofilm formed on a glass slide submerged in seawater.


Assuntos
Anti-Infecciosos , Incrustação Biológica , Produtos Biológicos , Ulva , Antibacterianos , Anti-Infecciosos/farmacologia , Incrustação Biológica/prevenção & controle , Polissacarídeos/química , Polissacarídeos/farmacologia , Sulfatos , Ulva/química
9.
Biomed Res Int ; 2021: 5801700, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34912891

RESUMO

Microorganisms obtained from the marine environment may represent a potential therapeutic value for multiple diseases. This study explored the possible protective role of marine-derived potential probiotic Enterococcus faecium EA9 (E. faecium) against pulmonary inflammation and oxidative stress using the cecal ligation and puncture (CLP) model of sepsis in Wistar rats. Animals were pretreated with E. faecium for 10 days before either sham or CLP surgeries. Animals were sacrificed 72 hours following the surgical intervention. The histological architecture of lung tissues was evaluated as indicated by the lung injury score. In addition, the extend of pulmonary edema was determined as wet/dry weight ratio. The inflammatory cytokines were estimated in lung tissues, including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1 beta (IL-1ß) using the enzyme-linked-immunosorbent-assay (ELISA) technique. Moreover, markers for lipid peroxidation such as thiobarbituric acid reaction substances (TBARs), and endogenous antioxidants, including reduced glutathione (GSH) were determined in lung tissues. Finally, the enzymatic activities of antioxidant enzymes such as catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were assayed in the lungs. Pretreatment with E. faecium markedly attenuated CLP-induced lung injury and pulmonary edema. Markers for inflammation, including TNF-α, IL-6, and IL-1ß were augmented in the lung tissues of CLP animals, while E. faecium ameliorated their augmented levels. E. faecium pretreatment also restored the elevated TBARS levels and the prohibited CAT, SOD, and GPx enzymatic activities in CLP animals. GSH levels were corrected by E. faecium in CLP animals. The inflammatory and lipid peroxidation mediators were positively correlated, while antioxidant enzymatic activities were negatively correlated with CLP-induced lung injury and pulmonary edema. Collectively, marine-derived Enterococcus faecium EA9 might be considered as a prospective therapeutic tool for the management of pulmonary dysfunction associated with sepsis.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Ceco/efeitos dos fármacos , Enterococcus faecium/fisiologia , Inflamação/tratamento farmacológico , Probióticos/farmacologia , Sepse/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Animais , Biomarcadores/metabolismo , Ceco/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/metabolismo , Inflamação/metabolismo , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Sepse/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA